

LH₂CRAFT Project - Safe and Efficient Marine Transportation of Liquid Hydrogen

Project developments and overview of present and future of H₂ **in waterborne transportation**

LH₂CRAFT Project - Safe and Efficient Marine Transportation of Liquid Hydrogen

Ana Mesbahi

Research Associate

Department of Naval Architecture, Offshore and Marine Engineering

University of Strathclyde

Presentation Outline

- Introduction to University of Strathclyde
- Project Overview
- Safety and Risk Assessment work

University of Strathclyde

Department of Naval Architecture, Ocean and Marine engineering

- Research excellence, effective industrial partnerships and creative engineering education
- Rated 1st in the UK & Europe, 3rd in the world for Marine/Ocean Engineering by ShanghaiRanking 2022
- 141 years' history
- First world Naval Architecture Chair was established in the Department in 1883

29 Members of Staff	Student numbers
9 Professors	350 Undergraduates
3 Readers/Senior Lecturers	62 MSc
12 Lecturers	Over 140 PhD

• Students come from over 40 countries

ABS TECHNISCHE UNIVERSITÄT

HYDRUS

HD KOREA SHIPBUILDING &

Strathclvde

Co-funded by the European Unio

Page 4 o<u>f 1</u>7

University of Strathclyde

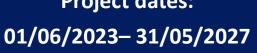
Department of Naval Architecture, Ocean and Marine engineering

Research Units

Marine Transportation Research Unit	Ocean Energy Research Unit
the stability and survivability of ships	experimental hydrodynamics
human factors and navigational safety	marine computational fluid dynamics
energy-efficient ship design	ship stability and safety
marine engineering	structural integrity management
alternative fuels and emissions	offshore renewable energy devices/systems
lifecycle risk management	offshore/subsea infrastructure
	offshore decommissioning

University of Strathclyde

Department of Naval Architecture, Ocean and Marine engineering


Alternative Fuels and Emissions Team

- Prof Peilin Zhou
- Dr Byongug Jeong
- Dr Haibin Wang
- Dr Ana Mesbahi
- Dr Hayoung Jang
- Dr Mujeeb Mughadar Palliparambil

- Dr InjunYang
- Dr Lin Yang
- Mr Insik Hwang
- Mr Binteng Gu
- Mr Panagiotis Gialelis

14 partners

11 beneficiaries 3 associated partners

9 countries

GABADI LNG

Project dates:

Total project budget: 7.664.269,67 €

Clean Hydrogen JU contribution: 5.627.595,94€

Other financial contribution: 806.348,75 € UKRI 1.230.325,00 € HD KSOE

UK Research

Expected TRL: TRL5 by the end of the project **TRL5 refers to technology validated in relevant environment

HYDRUS CABS UNIVERSITAT Christian Control University of Alterna

LHz

CRAFT

10/12/2024 Page 7 of 17

Co-funded by

the European Union

Consortium

HYDRUS - Project Coord.	NTUA
HD KSOE	TUD
ABS	UPATRAS
RINA	UoS
BV	GABADI
WEGEMT	ACTEMIUM
EASN	тwi

Main Objectives

LH₂CRAFT aims at developing next generation, sustainable, commercially attractive, and safe long-term storage and long-distance transportation of large amounts of Liquid Hydrogen (LH₂) for commercial vessels.

The project focuses on developing an innovative containment system of membranetype for large capacity storage (e.g. 160k-200k m³) at a temperature of -253 °C, demonstrating and validating it on a 10 ton (180 m³) prototype.

The **CCS** will achieve **AiP and General Approval** by ABS Classification Society, whereas **AiP** will be also issued for the concept design of the **auxiliary systems (HDMSS)**.

LH₂CRAFT will also develop a **preliminary integrated LH₂ carrier ship design**, while **alternative conceptual designs of CCS and LH₂ carrier vessels**, including detailed safety and risk assessment, will be examined.

Work Breakdown

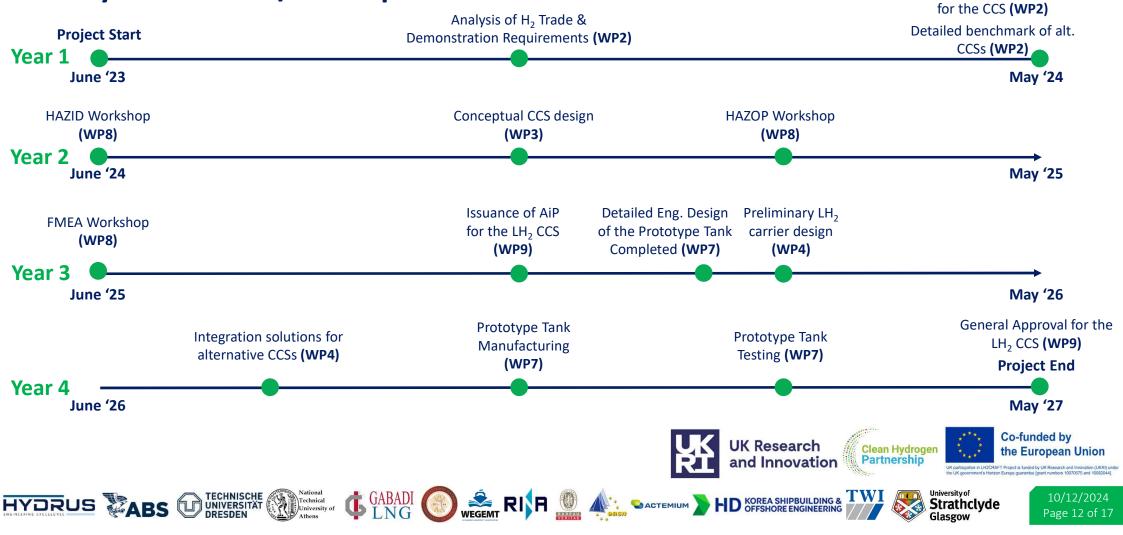
WP	LEADING PARTNER
WP1 - Project Management	HYDRUS
WP2 – LH ₂ Containment Implementation Plan and Evaluation Criteria Completed	RINA
WP3 – Conceptual Engineering Design for the LH ₂ Tank Storage & Scalability Scenarios	HD KSOE
WP4 – Preliminary Integrated Ship Design for an Innovative LH ₂ Carrier	HYDRUS
WP5 – Engineering Design Process for Handling, Distribution & Monitoring Subsystems (HDMSS)	NTUA
WP6 – Subsystems testing for thermo-mechanical validation Not Started	TUD
WP7 – Assembly, Manufacturing, Demonstration and Functionality Testing of the Prototype Not Start	ed GABADI
WP8 – Safety and Risk Assessment of the LH ₂ CCS	UoS
WP9 – Approval-in-Principle and General Approval of the LH ₂ CCS and HDMSS	ABS
WP10 – Technical Assessment KPIs and LCA	TWI
WP11 – Dissemination, Exploitation and Communication	HYDRUS

10/12/2024 Page 10 of 17

10070575 and 100

Core Technologies

Core technology	Way towards materialization	Goal TRL
Design of insulation system to accommodate LH ₂ temperatures (-253 °C) and minimizing boil-off rate	Expand the corresponding existing LNG containment system technology to meet the new stringent requirements	5 by M48
Modular and adaptable CCS design, to fit in cargo holds of various shapes and sizes	CCS comprised of modular, repeatable unit modules. Standardized connecting modules for joints with specific angle values.	5 by M48
Technology for integrating the proposed CCS into the hull structure	Expand the corresponding existing LNG containment system technology	5 by M48
Technology for manufacturing the CCS and erecting it inside a vessel cargo hold	Expand the corresponding existing LNG containment system technology	5 by M48
National C + D + D	UK Research and Innovation	Co-funded by the European Union


10/12/2024 Page 11 of 17

Definition of Testing Regs.

Key Milestones / Checkpoints

HYDRUS

WP8 - Safety and Risk Assessment of the LH₂ CCS

GABADI (

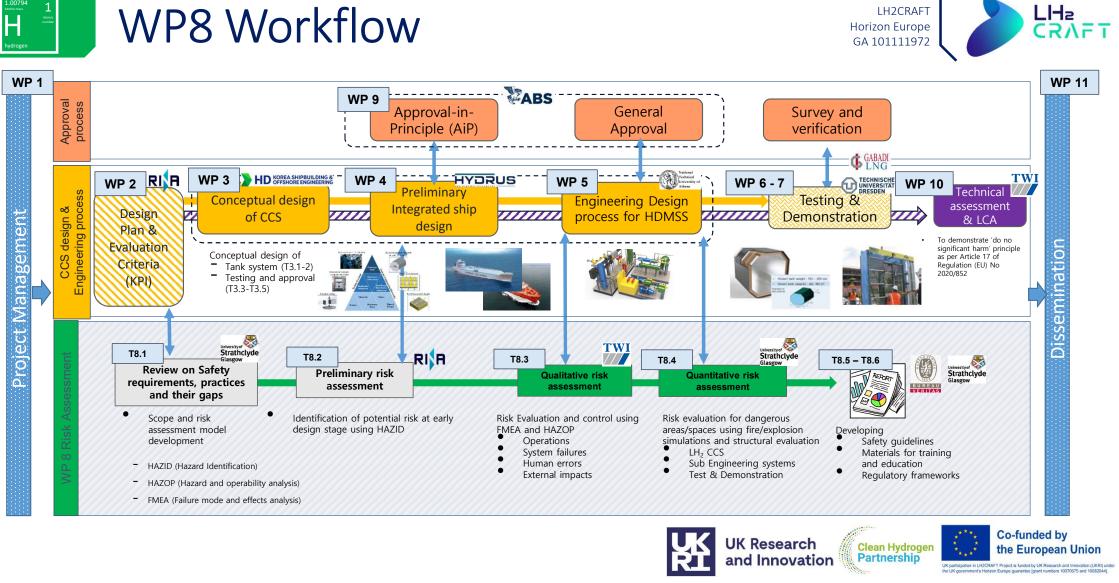
Clean Hydrogen Partnership

Strathclvde

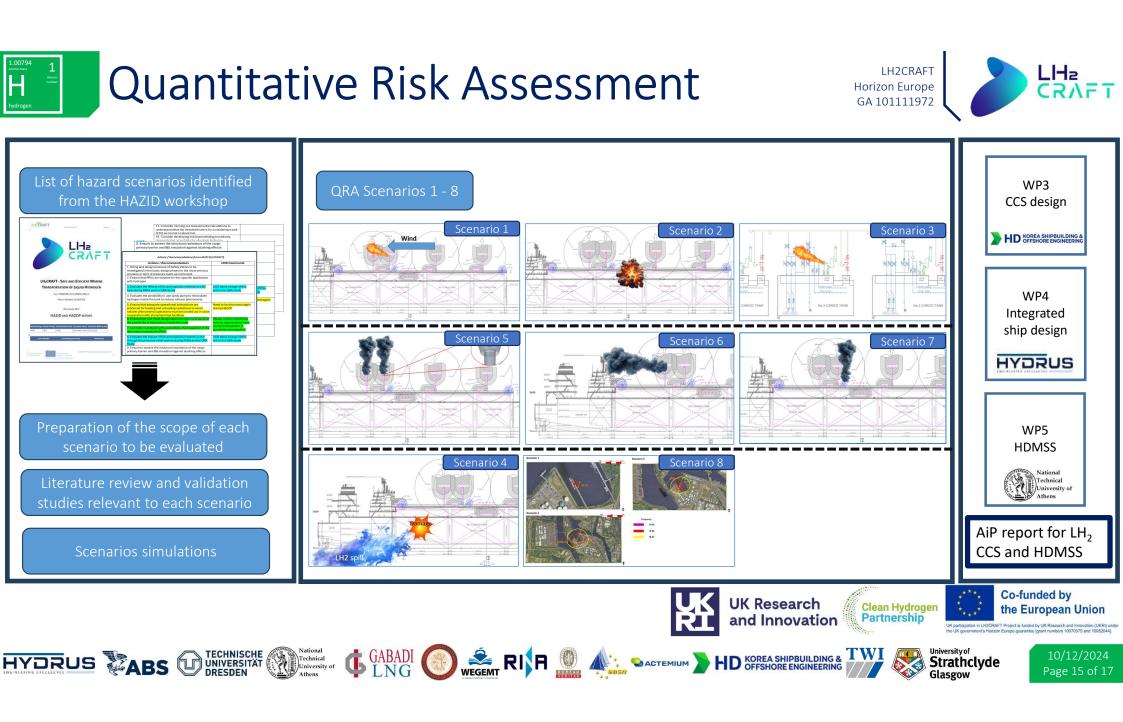
the European Unior

Page 13 of 1

This WP will ensure and enhance the safety of the engineering and detailed LH₂ storage design (WP2 to 6) and prototype testing (WP7) while proposing optimal design solutions for minimizing potential risks so as to achieve **Approval in Principle (AiP) and general Class Approvals**.


WP Objectives:

ABS DE TECHNISCHE UNIVERSITÄT DRESDEN


- Safety evaluation of conceptual/detailed designs of the demonstrator conducted.
- Optimal solutions for risks associated with designing testing of the demonstrator.
- Qualitative and quantitative consideration of key potential hazard elements
- Control of identified risks and implementation of safety solutions to the demonstrator.
- Design guidelines for general applicability and demonstration of scalability

💽 🚔 RI R 🚇

 Comparison with other types of storage systems and highlighting of safety differences and similarities

WP8:

- Completion of QRA studies
- HAZOP and FMEA Workshops

Overall:

- Completion of CCS design and materials selection
- Update of HDMSS drawings based on HAZID outcomes
- Further design analysis of LH₂ carrier
- Completion of materials testing list and procedures

https://www.linkedin.com/showcase/lh2craft/

