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Executive summary 

  

            This deliverable focuses on the assessment and reduction of fuel consumption in the maritime 

industry to promote sustainability and efficiency in the shipping sector. The work carried out explores 

a comprehensive approach that incorporates various methodologies and models across different 

aspects of ship operations. 

 The interactions between measures such as fuel consumption, rpm, draught, system 

degradation, and environmental conditions are complex, with often non-linear relationships. To 

address this complexity, engineering analysis and simulation models incorporating physics, empirical 

measurements, and data-driven elements are utilized. 

 By adopting effective assessment methods based on white and grey box approaches, ship 

operators can optimize fuel consumption through voyage optimization strategies. Route planning, 

weather routing, and the implementation of just-in-time models allow operators to take advantage 

of favourable conditions and minimize idle time. These practices reduce operational costs and 

minimize environmental impact. 

 The integration of hull and robotics inspection models plays a vital role in maintaining optimal 

ship performance. Regular inspections using advanced technologies enable the timely detection and 

resolution of potential issues, reducing fuel consumption caused by drag and mechanical 

inefficiencies. This proactive approach leads to substantial energy savings. 

 Condition-based monitoring, facilitated by sensor technologies and data analysis, provides 

valuable insights into a ship's performance. By promptly identifying and addressing equipment 

malfunctions or performance deviations, fuel-consuming inefficiencies can be mitigated, optimizing 

operational efficiency, and reducing overall fuel consumption. 

 The use of energy simulators offers ship operators a powerful tool to evaluate and analyse 

different energy management strategies. Through simulations, operators can identify the most fuel-

efficient operating parameters, optimizing energy consumption and reducing the environmental 

impact of ship operations. Informed decision-making facilitates the implementation of sustainable 

practices and fuel consumption reduction. 

 Furthermore, the life cycle assessment model enables a comprehensive evaluation of a ship's 

environmental footprint throughout its entire life cycle. Considering all stages, from raw material 

extraction to end-of-life disposal, stakeholders can identify opportunities for improvement and 

implement sustainable practices that minimize fuel consumption and environmental impact. 

 In conclusion, this deliverable provides insights into the complexity of interactions affecting 

fuel consumption in the maritime industry. By incorporating various methodologies and models, it 

demonstrates the potential for fuel efficiency optimization through voyage assessment, proactive 

maintenance, energy management strategies, and comprehensive life cycle evaluation. Implementing 

these approaches will contribute to a more sustainable and efficient shipping sector. 
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Glossary of terms and acronyms used 

 

Table 1 Glossary of acronyms and terms. 

Acronym / Term Description 

ACU  Absorption Chiller Unit 

DT Digital Twin 

EG Exhaust Gas 

EGE Exhaust Gas Economizer 

FOC Fuel Oil Consumption 

GIGO Garbage In Garbage Out 

HF High frequency 

HT High Temperature 

HVAC Heating, Ventilation and Air Conditioning 

LCA Lifecycle Analysis 

LL Living labs 

LT Low Temperature 

OFB Oil Fired Boiler 

OKC Organic Kalina Cycle 

ORC Organic Rankine Cycle 

SFOC Specific Fuel Oil Consumption 

WHR Waste heat recovery 

WP Work package 
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1 Introduction 

As digitalisation in the shipping industry has been maturing over the recent years, DT adoption will be 

dependent on establishing trusted and convincing DT application exemplars and ensuring that ship 

operators and other industry stakeholders can set up their own DTs based on their own business models, 

building their own confidential knowledge at reasonable cost. This requirement is at the heart of the 

DT4GS approach as illustrated in the figure below.  

 
Figure 1 DT4GS approach 

DT4GS will provide a virtual representation of ships and physical transport entities with a bi-directional 

communication links from sensing to actuation/control and data driven simulation and AI based decision 

support to people who will implement necessary actions. In DT4GS extra emphasis will be given to:  

• DT applications onboard the ship utilising advanced IoT and edge computing infrastructure.  

• Using labelled data for AI/ML training and to provide the ground truth for accurate predictions 

(supervised learning), and where there is need to learn from experience to provide the reward 

function (reinforcement learning). 

• Creating a common point of reference in the digital world for shipping vessels, which different 

stakeholders can access and utilise and adapt in line with their own internal business needs.  

 

To reach its goals, DT4GS is divided into 6 WPs, each with different goals, tasks, and deliverables. This 

document is linked to WP1, ‘’DT4GS modelling framework for ship operational performance optimisation 

including ship efficiency innovations’’ which focuses on the methods to assess and reduce fuel 

consumption in ships, aiming to enhance fuel efficiency and sustainability in the maritime industry. The 

following discussion provide an overview of the key areas explored in this deliverable: 

i. Fuel oil consumption assessment: This is based on analysis of high frequency data collected by the 

Living Labs. The data are fed to developed mathematical models that simulate the behaviour of ships 

in terms of required power. In particular, we aim to find the relations between ship’s consumption 

data and the trim condition, hull status (fouling presence) and weather condition. 

ii. Navigation Management: Navigation management concerns the areas of navigation, steering and 

routing, speed, displacement, trim, and the dynamic effects of ship motions, steering and weather. 

The following navigation optimisation models are covered: Route planning for optimal fuel 

consumption; Weather routing to avoid adverse conditions; Implementation of a just-in-time model 

to minimize idle time. 

iii. Hull Inspection Model using robotics: Development of new hull inspection workflows utilising 

automation and robotics. This includes: Regular inspections of the ship's hull and underwater 

components; Application of robotics to advanced inspection techniques. 

iv. Condition-Based Monitoring: Diagnostics models used for identifying wear and damage early on and 

avoid unplanned repairs. This includes: Continuous monitoring of critical components and systems; 

Utilization of sensors and data analytics techniques. 

Ship Physical world Ship Digital  TwinData 
Asset/ System Monitoring

Interventions 
Control

Improved decisions

Company-centric Confidentiality preserving  DT
Improved decisions - Optimisation [operation, retrofitting, newbuilds] 

DT4GS  Open Digital 
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EDGE
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and Blueprints Directory 
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Connectors

Geen Ship  Operation Optimisation 
Reference Digital Twin
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v. Energy Simulator: Simulating and analyzing different energy management strategies. Energy 

simulation models allow: Identifying the most fuel-efficient operating parameters; Informed 

decision-making and effective energy management. By knowing the devices installed onboard, in 

the engine room and by modelling the requested and delivered thermal fluxes of the individual 

devices, it is possible to evaluate the ship energy balance. The energy balance is an essential point 

to evaluate potential WHR solutions. 

vi. Life Cycle Assessment Model: Evaluating the environmental impact throughout a ship's life cycle. 

The developed LCA models allow: Considering raw material extraction, construction, operation, and 

disposal; Identifying areas for improvement and implementing sustainable practices. By integrating 

these methodologies and models, ship operators and stakeholders can optimize fuel consumption, 

reduce environmental impact, and improve overall operational efficiency. This comprehensive 

approach aims to drive the maritime industry towards a more sustainable and economically viable 

future. 

 
Considering the above, the objective of this deliverable is therefore the development of ship performance 

models that will be later incorporated in the developed digital twins by the living labs and provide 

comprehensive ship performance analysis before and after the installation of decarbonisation 

technologies. 
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1.1 Mapping DT4GS Outputs 

The purpose of this section is to map DT4GS Grant Agreement commitments, both within the formal Deliverable and Task description, against the current 

document. 

Table 2 Adherence to DT4GS Grant Agreement deliverable and work description. 

DT4GS GA 

Component 

Title 

DT4GS GA Component Outline Respective Document 

Chapter(s) 

Justification 

DELIVERABLE 

D[1.2] 

[modelling 

framework for 

ship 

operational 

performance 

optimisation 

including ship 

efficiency 

innovations] 

Modelling Framework Specification, Navigation 

Management and hull models, Integrated Machinery 

Performance management and remote-control models, 

Integrated ship energy production models, Robust Fuel 

consumption models, and Life Cycle assessment 

Models.  

 

2, 3, 4, 7, 9 

 

 

Modelling Framework Specification is 

covered in section 2.1. 

Hull models and Robust Fuel consumption 

models are covered in section 3. 

Navigation Management is covered in section 

4. 

Integrated Machinery Performance 

management and remote control covered in 

Section 7. 

Life Cycle assessment Models are covered in 

Section 9. 
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TASK 

ST[1.2.1] 

[DT4GS 

modelling 

framework 

specification] 

Utilise the EUROYARDS "CODE KILO" general 

architecture and business model of a Maritime Data 

Space for collaborative data / services sharing, and 

"ENGIMMONIA" for energy efficiency, focusing on 

Energy Management Systems that monitor onboard 

energy producers/users. The framework will include a 

metamodel to link ship subsystem models comprising of 

IoT sensors and decarbonisation technologies to impact 

KPIs, operational performance as well as sensing & 

control aspects, standardisation. The Framework will 

also comprise of semantic capabilities and gateways to 

external model libraries. 

2, 7, 8 

 

The EUROYARDS "CODE KILO" general 

architecture was used to inform the designs 

in Section 2. The section also discusses 

semantic capabilities and gateways to 

external model libraries. 

“ENGIMMONIA" for energy efficiency, 

focusing on Energy Management Systems 

was used to inform Section 7 (Integrated 

Machinery Performance Management and 

Remote Control). 

Metamodel to link ship subsystem models 

comprising of IoT sensors and 

decarbonisation technologies to impact KPIs, 

operational performance as well as sensing & 

control aspects, standardisation are 

addressed in Section 8. 

ST[1.2.2] 

[Navigation 

Management] 

This includes real-time predictive wind and solar energy 

spectra analysis linking with trim, route and speed 

optimisation algorithms, and environmental agents’ 

model. 

4, 5 

Areas covered include route planning for 

optimal fuel consumption, and weather 

routing to avoid adverse conditions; 
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ST[1.2.3] [Hull 

and Robotic 

Inspection 

Models] 

providing a holistic visualization of the vessel’s structure 

and condition with the use of swarms of robots, mainly 

UAVs, parallel cable robots and underwater ROVs 

6 

Areas covered include regular inspections of 

the ship's hull and underwater components, 

and the integration of robotics and advanced 

inspection techniques; 

ST[1.2.4] 

[Integrated 

Machinery 

performance 

management 

and remote 

control] 

Create models for all on-board equipment and 

machinery, networks, and control systems to represent 

virtual engine rooms, connected to data on cost and the 

vessel’s operating parameters to enable remote control 

of the vessel. Recommend ship system settings to save 

energy with equipment running at peak efficiency, 

based on predictions. 

7 

Areas covered include the continuous 

monitoring of critical components and 

systems, and the utilization of sensors and 

data analysis techniques. 

ST[1.2.5] 

Integrated ship 

energy 

production, 

distribution, 

recovery & 

management] 

Derive optimisation models to configure the WHR plant, 

and simulations to determine the effects of 

implementing additional Energy Recovery Units or new 

HVAC solutions, and to estimate the associated saving. 

8 

Areas covered include simulating and 

analysing different energy management 

strategies,  identifying the most fuel-efficient 

operating parameters, informed decision-

making and effective energy management. 

ST[1.2.6] 

[Robust fuel 

consumption 

and CO2e 

emission 

Models] 

CO2 emissions will be monitored in relation to several 

industry-standard operations parameters. The 

Monitoring, Reporting, Verification (MRV) method. 

3 

Areas covered include LL data analysis by 

means of HF data available, and developing a 

mathematical model to emulate the 

behaviour of ships in terms of required 

power. In particular, the research study 

concerning to find the relations between 
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ship’s data and the trim condition, hull status 

(fouling presence) and weather condition; 

Thanks to the correct evaluation of power 

requested onboard for propulsion, energy 

generation and hotel load is possible to 

estimate the CO2 emission with high 

precision. 

ST[1.2.7] [Life 

Cycle 

Assessment] 

model aligned with EPLCA to assess potential 

investments as well as operational, monetary and 

maintenance decisions. Holistic optimisation of the 

ship’s design and operation lifecycle. 

9 

Areas covered include evaluating the 

environmental impact throughout a ship's life 

cycle, considering raw material extraction, 

construction, operation, and disposal, and 

identifying areas for improvement and 

implementing sustainable practices. 

ST[1.2.8] 

Integrated 

modelling 

framework for 

ship 

performance 

improvement 

using JIT 

arrivals 

The potential for energy savings across different ships 

and segments of the global fleet will be estimated by 

modelling the use of the SEAS JIT platform, simulating 

vessel energy performance in a year’s voyages. 

5 
The implementation of a just-in-time model to 

minimize idle time is described in Section 5. 
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1.2 Deliverable Overview and Report Structure 

In this section, a description of the Deliverable’s Structure is provided outlining the respective sections 

and their content.  

SECTION 2: High-level presentation concerning the holistic framework. Presenting the main models that 

have been in detail discussed in the next Sections. 

SECTION 3: Fuel Oil consumption. To estimate the ship's consumption, models have been created with 

which it is possible to estimate the power required by the ship as the speed and boundary conditions 

change. Having obtained the required power, it is possible to estimate consumption through the 

characteristics of the engine installed on board. Finally, from the knowledge of consumption it was 

possible to estimate the greenhouse gases emitted. 

SECTION 4 & 5: Navigation Management models. Knowing the relationship between ship speed and 

consumption, it is possible to determine the best route for consumption efficiency purposes using route 

planning models. In particular, the shortest route model that can generate way points is shown. The 

generated way points are then processed by a weather routing model that, based on the weather 

information, is able to modify the route appropriately. Finally, the route speed is validated through a just-

in-time model that takes care of slowing down the ship if necessary to save fuel. 

SECTION 6: Mathematical models are derived to evaluate the increase in resistance due to the presence 

of fouling. In addition, models for predicting fouling on board are provided. Finally, models for internal 

and external hull inspection are discussed. 

SECTION 7: A system capable of performing condition-based monitoring is shown. Thus, it is a fully data-

driven system that can determine whether a device is in a proper operating regime or not based on the 

data recorded on board. 

SECTION 8: the structure of an energy simulator capable of evaluating the heat fluxes exchanged 

between various on-board devices was shown. This system has importance in the evaluation of 

alternative solutions for waste heat flux recovery (waste heat recovery system). 

SECTION 9: Life Cycle Assessment. The aim is to provide a systematic analysis that helps to identify, 

quantify, interpret, and evaluate the environmental impact of different mitigation strategies through the 

vessel's life. 

SECTION 10: Conclusions.  
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2 DT4GS Framework Specification 

2.1 Framework Structure 

Over the past 30 years in industry, continuous technological advancement has led to a constant 

improvement in the availability and quality of available and collectible data.  In the maritime industry, one 

of the main goals is to build efficient products, then design hull shapes with lower hydrodynamic 

resistance without compromising stability and, above all, to study a propulsion system that allows 

compliance with environmental regulations. [1] 

Technological development made it possible not only to optimize the initial design alone, designed to 

make the entire product more innovative, but above all to continue to monitor the ship during its 

operational life. This constant monitoring of the parameters considered vital makes it possible to 

precisely know the state of the ship by making available a large amount of data that allows its study and 

optimization under different points. 

For example, the behaviour of a propulsion system is characterized by the interaction of several 

components that influence each other, which can be monitored and examined.  

Continuous monitoring of the state of the system and the different diagnostics obtained allows the 

system's reliability to be improved and maintenance and operation expenses to be reduced. At the 

expense of a slightly higher cost compared to a ship without sensors installed on board, the economic 

advantage is higher as it requires a small number of sensors installed on board. [2]. 

In general, the steps for proper data analysis are: 

• Preparation 

• Modelling 

• Evaluation 

Data preparation includes a pre-processing step that can produce an ideal model. Modelling and data 

preparation go hand in hand, and, for this reason, it is an iterative process. The results of previous 

applications lead to a better approximation that will be closer and closer to the actual model. At the end 

of the process is the evaluation, which allows the estimation of the assumptions made during the analysis 

and provides the right considerations of the study performed. [3] 

For this purpose, a Model-Based Design approach was used: a mathematical approach used for the 

development of complex control systems; it is a procedure based on: 

• use of mathematical models 

• design with simulation 

• implementation with code generation 

Using Model-Based Design, simulation models can be created so that users can easily evaluate whether 

the entire system will perform as expected. Simulation models require technical parameters that are 

essential for proper emulation of reality, which, in some cases, may be unknown or uncertain, resulting 

in drawbacks. Generating a simulation model and determining these parameters involves considerable 

effort in terms of time and resources.  

Indeed, Model-based design is a method for designing systems in which a mathematical model is used to 

represent the behaviour of the system and to guide the design process. Moreover, can be a powerful tool 
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for understanding complex systems, but it also has its limitations due to the complexity of emulated 

phenomena. 

Overall, model-based design is a widely used and powerful method for designing systems, and research 

in this area is active and rapidly evolving [4]. 

Model-based design is a method for designing systems in which a mathematical model is used to 

represent the behaviour of the system and to guide the design process.  

The aim of the DT4GS project is to create a multipurpose platform able to perform an easy CO2 evaluation 

by means a tailored digital twin. 

Indeed, a digital twin can be created using a model-based design approach. The mathematical model used 

in the design process can be used to create a digital twin that can be used to simulate the behaviour of 

the physical system, analyse its performance, and optimize its design. 

This virtual replica is connected to the physical asset through sensors, which provide data about the 

asset's performance. By comparing the data from the sensors with the predictions of the digital twin, it 

is possible to detect deviations from the expected behaviour and take corrective action to improve the 

performance of the physical asset. 

Eventually, model-based design and digital twin are related concepts useful to design, simulate, analyse 

and optimize the performance of physical systems. 

2.2 Challenges and Threats 

Model-based design is a powerful method for designing systems, but it also has its limitations. One of the 

main constraints of model-based design is the availability and quality of data. 

Data availability refers to the amount of data that is available to be used in the model. For a model to be 

accurate, it needs to be based on a sufficient amount of data. However, in many cases, the data required 

for a model may not be available or may be difficult to obtain. This can be a significant constraint in the 

model-based design process. 

Data quality refers to the accuracy and relevance of the data that is used in the model. Inaccurate data or 

data that is not relevant to the system being modeled can lead to inaccurate predictions or unreliable 

models. Ensuring the quality of the data is a critical step in the model-based design process. 

Another constraint of model-based design is the complexity of the system being modeled. Complex 

systems can be difficult to model accurately. 

Moreover, it is important to validate the model's predictions in the real world. A model that accurately 

represents the system in the laboratory or simulation may not perform as well in the real world, due to 

unmodeled factors such as noise, disturbances, or variations in the system. 

Eventually, the availability and quality of data, the complexity of the system, and the validation of the 

model's predictions are some of the constraints of model-based design. To overcome these constraints, 

it is important to have a robust data collection and management strategy, to use appropriate modeling 

techniques, and to validate the model's predictions through experiments or field tests. 

In this context, the most critical stage is the initial creation of mathematical models based on the LL data. 

Indeed, a thorough analysis of the data is essential to check their quality. In fact, strict analysis is 

necessary to avoid the creation of unreliable models, avoiding garbage in garbage out (GIGO). 
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This can be achieved by using multiple sources of data, cleaning and preprocessing the data, and using 

appropriate data validation methods. Additionally, it is essential to have a good understanding of the 

system's underlying physics and dynamics to build accurate mathematical models. 

Eventually, to avoid GIGO in model-based design, it is crucial to ensure that the input data used to build 

and validate the model is of high quality, accurate and relevant.  

Of course, the problem of data goodness and availability is also present in the model feeding phase used 

to carry out the assessment during the ship's operation. But this is less impactful, as it is desirable that 

the first stage, during model creation, allows a hierarchy and pre-processing procedure to be established, 

which should continue to be adopted after model creation, so that model input is standardized.  

For these reasons, a rigorous analysis was conducted on the availability and quality of available data. In 

particular, the analysis relied on high-frequency data to best characterize the models. 

In this regard, several clarifications were requested from the LL partners to obtain a unified dataset 

among all partners and usable in the framework to be composed. Further updates on this topic will be 

presented in the future when a common guideline is established among all LL partners. 

2.3 Employed Technologies 

Several approaches to LL data management were considered. The first step was to decide which data to 

use to analyze the operational use of ships. In general, the available shipboard data has two different 

natures. The first type of data is contained in the "noon reports," in which various information on 

navigation and ship operation is transcribed once a day. In this case, the data are extremely rarefied, and 

much information is lost. The advantage of this approach is that all ships have this type of data available, 

so a model based on this type of data could easily be used by a large number of ship owners.  

The other type of data provided by LL partners is high-frequency data; the sampling interval can vary from 

seconds to minutes, depending on the settings set on board. In this case, the amount of data allows 

accurate monitoring of the ship's status during operational performance. The downside of this approach 

is that because it is a large amount of data, it is not easy to manage; moreover, not all shipowners have 

systems for high-frequency acquisition of data from the field. This last statement is of little relevance as 

more and more ships are equipped with similar systems, given their marginal cost relative to that of 

construction. 

For such reasons, HF data were chosen to analyze and evaluate the relationship between the required 

power and sailing operating conditions (such as trim, water conditions, and hull fouling condition). 

Indeed, the idea is that by using HF data, a useful model can be created to increase or decrease the 

required power with respect to standard still-water conditions. 

After choosing the dataset to refer to, the next step was to choose which approach to use to derive the 

mathematical models that would express the variation in power requirements as a function of sailing 

conditions.  

In general, there are three approaches: White box, gray box, and black box approaches [5, 6, 7, 8]. 

Generally, they are used to describe the level of visibility or knowledge an individual or system has of a 

computer system or network. In particular, the definitions of these terms are the following: 

• White Box: In this approach, the tester has complete knowledge of the internal workings of the 

software, including the code, algorithms, and logic.  

The focus is on testing individual functions, statements, and branches to ensure that they work as 
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intended. This approach requires a strong understanding of software development and 

programming concepts. 

• Grey Box: In this approach, the tester has limited knowledge of the internal workings of the 

software, but not as much as in white box testing.  

The focus is on testing the functional and non-functional requirements of the software and how they 

are implemented. This approach requires some understanding of software development concepts 

and the ability to read and understand code. 

• Black Box: In this approach, the tester has no knowledge of the internal workings of the software 

and only interacts with the inputs and outputs.  

The focus is on testing the software from the user's perspective and ensuring that it meets the 

specified requirements. This approach does not require any knowledge of software development or 

programming concepts, but rather a thorough understanding of the software's functional and non-

functional requirements. 

 

In summary, the main difference between the three approaches is the level of knowledge and 

involvement the tester has with the internal workings of the software being tested. White box testing 

focuses on the individual components, gray box testing focuses on the functional and non-functional 

requirements, and black box testing focuses on the user's perspective. 

Initially, it was planned to follow the white box approach, specifically a dynamic approach to emulate all 

components of the propulsion chain (engine, axle, and propeller) [9, 10, 11]. Unfortunately given the large 

amount of data required to faithfully emulate each individual component, this approach was discarded 

due to the lack of necessary data and especially with the view that this model could be a generalized 

solution to the problem. Indeed, a hybrid approach was pursued in which white box and gray box models 

were employed.  

In detail, the white box model is described by a workflow of different mathematical models selected from 

the literature and which will be shown in detail in the following paragraphs. As for the gray box model, it 

was decided to feed it with high-frequency data provided by ships.  

As of today, in fact, it has been decided that these approaches represent the most suitable solution about 

the evaluation on the dependence between brake power demand and navigation conditions. Under this 

condition, key behaviors will be emulated through relationships known a priori and described by 

mathematical laws, these will be compared with the gray box model in which the ship's HF information is 

processed by organizing it due to a priori knowledge of the phenomenon being analyzed. 

It should also be added that it is possible to develop a black box model fed by a training set of the ship's 

main data that allows the physical relationships of the model to be ignored, mapping only the actions and 

reactions of the system. In this case, the risk is that generality is lost, and a model developed on one ship 

is not usable for another. For these reasons this approach is only taken and included in the subsequent 

workflow but not described in detail because, at an early stage of the project, it is not used. 

 

2.4 System Overview 

The global maritime industry plays a critical role in facilitating international trade and transportation. 

However, the significant fuel consumption associated with ships poses both environmental and economic 

challenges. Addressing this issue is of paramount importance, and as such, there has been a growing 

emphasis on developing methods to assess and reduce fuel consumption in ships. 
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This deliverable explores a holistic approach to enhance fuel efficiency in maritime operations, 

encompassing various methodologies and models. The key focus areas include navigation management, 

hull and robotics inspection, condition-based monitoring, energy simulation, and life cycle assessment. 

By integrating these strategies, ship operators and stakeholders can optimize fuel consumption, minimize 

environmental impact, and improve overall operational efficiency. 

The first area of focus is to develop a holistic approach that encompasses white box and grey box 

approaches and goes as far as assessing proper consumption and related CO2 emissions. Accordingly, 

after assessing ship’s consumption, route optimization can be carried out.  

In detail, voyage optimization, which involves precise route planning, weather routing, and the 

implementation of a just-in-time model. Efficient route planning enables ships to navigate through 

favourable currents and weather conditions, minimizing resistance and fuel consumption. Weather 

routing systems utilize real-time weather data and sophisticated algorithms to provide optimal routes 

that avoid adverse weather conditions. The just-in-time model ensures that vessels arrive at ports 

precisely when their services are required, reducing idle time and unnecessary fuel consumption. 

Another critical aspect is the hull and robotics inspection model. Regular inspections of a ship's hull, 

propellers, and other underwater components are vital to maintaining optimal performance and reducing 

fuel consumption. The integration of robotics and advanced inspection techniques allows for efficient 

and thorough assessments, minimizing downtime and ensuring the ship operates at peak efficiency. 

Condition-based monitoring is an essential tool for assessing and optimizing fuel consumption. By 

utilizing sensors and data analysis techniques, critical components and systems aboard the ship can be 

continuously monitored, enabling proactive maintenance and early detection of potential issues. This 

approach ensures that fuel-consuming inefficiencies arising from faulty equipment or suboptimal 

performance are promptly addressed. 

The deliverable also explores the use of energy simulators, which enable ship operators to simulate and 

analyse different energy management strategies. By simulating various scenarios, operators can identify 

the most fuel-efficient operating parameters, optimizing the ship's overall energy consumption. This 

approach allows for informed decision-making and effective energy management in real-world 

operations. 

Lastly, the Life Cycle Assessment (LCA) model is introduced to evaluate the environmental impact of a 

ship throughout its entire life cycle. This comprehensive assessment considers factors such as raw 

material extraction, ship construction, operation, maintenance, and end-of-life disposal. By quantifying 

and analysing the environmental footprint at each stage, ship designers, operators, and regulators can 

identify areas for improvement and implement sustainable practices to minimize fuel consumption and 

environmental impact. 
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Figure 2. System overview, main topics 

This deliverable presents a multifaceted approach to assess and reduce fuel consumption in maritime 

operations. By combining navigation management, hull and robotics inspection, condition-based 

monitoring, energy simulation, and life cycle assessment, ship operators can enhance fuel efficiency, 

reduce environmental impact, and optimize operational performance. Implementing these 

methodologies will contribute to a more sustainable and economically viable maritime industry in the 

future. 
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3 Fuel Oil Consumption Evaluation 

3.1 Engine Power Estimation 

In detail, what has been described in the following section is shown in Figure 3. This workflow describes 

the logical process of choosing the models to be used for the realization of a digital twin in order to 

evaluate the power demand and relative consumption of the ship. In particular, two main parts can be 

observed coexisting with each other. 

The first, the one in which the process leading to the creation of the demand curve in terms of engine 

power and rotations per minute (RPM) is described, through a purely theoretical approach, is the one 

inside the green window located at the top. 

In the second, located further down on the left of Figure 3, two modules are visible: the first "3d Grade 

polynomial Curve Fitting," which takes advantage of a grey box approach. The second "MLP regressor" 

is described by a black box model. As mentioned above, the latter model, based on a black box approach, 

is intended as food for thought since it has not been implemented at this stage of development. 

The final output for both branches of the workflow is the demand in terms of power output to the engine 

and the relative propeller revolutions. 

If you have simultaneously the HF data used for the Gray and Black Box models and the technical data to 

be used in the White Box model, you can make a comparison by looking at the differences between the 

demand curves of the theoretical models and those of the data-driven models.  

Knowing the power and RPM of the engine, it is possible to estimate its consumption by knowing the 

engine consumption map, which is provided by the engine manufacturer. The consumption map contains 

information in terms of litres per hour or SFOC [g/kwh] of all engine operating points. Specifically, this 

information is contained in the form of iso-consumption curves.  

Eventually, by knowing the required power for the voyage and the relationship that links power output 

and CO2 emitted (depending on the type of motorization installed on board). 
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Figure 3. Brake power, engine rpm and FOC evaluation workflow. 

 

3.2 Theoretical Approach Pipeline 

The theoretical model is described with a model-based approach, in which the phenomena considered 

essential to assess the required brake power have been schematized mathematically. 

This schematization was implemented to ensure a generalized model capable of encompassing most 

commercial ships. Paying attention to the amount of information needed to be able to use the theoretical 

model, trying to limit it as much as possible. 
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Figure 4. White box workflows 

Two main branches can be distinguished within the mathematical model of Figure 4. The first, the left 

branch, concerns the evaluation of ship’s hull resistance; the second, the right branch, establishes the 

methodology for determining the propeller operating conditions described by the open water diagram. 

3.2.1 Hull Resistance Branch 

This section describes how to determine ship hull resistance in still water. 

The first block encountered within the pipeline establishes which model to use for the resistance 

assessment. In cases where the shipowner does not know the own hull resistance as a function of ship 

speed in still water, it can be determined using the method of Holtrop and Mennen [12, 13] by means of 

several dimension characteristics. 

In detail, Holtrop and Mennen's method is a widely used empirical method to estimate the total resistance 

of a ship and is based on statistical analysis of extensive model test data. 

The method estimates the total resistance of a ship as the sum of its frictional resistance and wave-making 

resistance. The frictional resistance is calculated using the ITTC friction line method, while the wave-

making resistance is estimated using a set of equations based on Froude number and hull form 

coefficients. 

The Holtrop and Mennen method takes into account a range of factors, including the length, beam, and 

draft of the ship, as well as its speed, displacement, and hull form coefficients. It also considers the effect 

of appendages such as rudders, skegs, and bilge keels. The accuracy of the method has been found to be 

good for a wide range of ship types and sizes, although it may not be as accurate for unusual hull forms 
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or for ships operating in unusual conditions. It is often used in the initial design stages of a ship to estimate 

its resistance and to evaluate the effect of changes in design parameters on resistance. Indeed, there are 

some constraints and limitations to this method that should be considered. 

Limited accuracy for certain hull forms: The method is most accurate for conventional hull forms and may 

not be as accurate for unusual hull forms or complex geometry such as bulbous bows or stern flaps. 

Limited applicability for high-speed vessels: The method is primarily designed for ships that operate at 

low to moderate speeds and may not be applicable to high-speed vessels such as fast ferries or planning 

boats. 

Limited accuracy in rough seas: The method is based on model tests in calm water conditions and may 

not accurately predict resistance in rough seas or in waves. 

Limited consideration of dynamic effects: The method does not take into account dynamic effects such 

as slamming, which can significantly affect resistance in some types of vessels. 

Despite these constraints, the Holtrop and Mennen method remains a widely used and valuable tool for 

estimating ship resistance and optimizing ship design. It provides a useful starting point for further 

analysis and can help identify areas for further optimization and improvement. 

At this point, the resistance to still water of the ship unit is known. 

To this resistance must be added the contribution of environmental conditions, the longitudinal trim of 

the ship, and finally the cleanliness of the hull due to the presence of fouling. 

3.2.2 Increased Resistance due to Weather Condition  

To calculate the required brake power, it is necessary to estimate the additional resistance acting on the 

ship’s hull.  

Depending on the weather conditions, the power consumed can vary with the speed of the ship. To 

estimate the additional resistance, environmental data (weather data) of the ship's position is required. 

Indeed, meteorological data can be obtained from climate data centres and include the time, position, 

speed and direction of wind, waves and current in order to make simulation concerning the benefit from 

a chosen rout and optimize it. Moreover, the weather data can be matched with AIS data based on time 

and position information in on-line approach. 

In particular, by means of methods for estimating the hull resistance increase described in ISO15016:2015 

[14], is possible to assess additional resistance to measure the effects of the weather.  

In the ISO15016:2015, additional resistance is divided into three main components; resistance due to wind, 

resistance due to waves, and resistance due to water temperature and density. The total increased 

amount of resistance ∆𝑅 is: 

 

∆𝑅 =  𝑅𝐴𝐴 + 𝑅𝐴𝑊 + 𝑅𝐴𝑆 

 

where 𝑅𝐴𝐴, is the resistance increase due to wind, 𝑅𝐴𝑊, is the resistance increase due to wave and 𝑅𝐴𝑆 is 

the resistance increase due to density and water temperature. This last contribute can be omitted in due 

to its small magnitude. 

The resistance increase due to wind is calculated by: 
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𝑅𝐴𝐴 =
1

2
 𝜌𝐴 𝐶𝐴𝐴(𝜓𝑊𝑅𝑟𝑒𝑓) 𝐴𝑋𝑉  𝑉𝑊𝑅𝑟𝑒𝑓

2 −  
1

2
 𝜌𝐴 𝐶𝐴𝐴(0) 𝐴𝑋𝑉 𝑉𝐺

2   

 

where 𝜌𝐴 is air density, 𝐶𝐴𝐴(𝜓𝑊𝑅𝑟𝑒𝑓)is the wind resistance coefficient; 𝐶𝐴𝐴(0) means the wind resistance 

coefficient in head wind, 𝐴𝑋𝑉  the transverse projected area above the waterline including superstructures 

in square metres, 𝑉𝑊𝑅𝑟𝑒𝑓 is the relative wind velocity at the reference height in metres per second; 𝑉𝐺 is 

the measured ship’s speed over ground and 𝜓𝑊𝑅𝑟𝑒𝑓 is the relative wind direction at the reference height 

in degrees. 

Concerning the wave, the head waves the encounter frequency of the waves is high. In these conditions 

the effect of wave induced motions can be neglected and the added resistance is dominated by the wave 

reflection of the hull on the waterline. The water line geometry is approximated based on the ship beam 

and the length of the bow section on the water line. 

The following formula estimates the resistance increase in head waves provided that heave and pitch are 

small. The application is restricted to waves in the bow sector (less than ± 45 degrees off the bow). For 

wave directions outside this sector no wave correction is applied. 

𝑅𝐴𝑊𝐿 =
1

16
 𝜌𝑆 𝑔 𝐻1/3

2  𝐵 √
𝐵

𝐿𝐵𝑊𝐿
  

where 𝑅𝐴𝑊𝐿 is the mean resistance increase in long crested irregular waves in newtons, as substitute for 

𝑅𝐴𝑊, 𝜌𝑆 is the water density, 𝑔 is the acceleration of gravity, 𝐵 is the ship’s breadth, 𝐻1/3 is the significant 

wave height in meters and 𝐿𝐵𝑊𝐿 is the distance of the bow to 95 % of maximum breadth on the waterline 

in metres. 

 

3.2.3 Increased Resistance due to Ship’s Trim  

The ship's trim refers to its longitudinal balance or the distribution of weight along its length. It is a critical 

aspect of ship stability and performance. The trim of a ship is determined by the difference between the 

ship's draft forward and aft. The draft refers to the depth of the ship's hull below the waterline. 

When a ship is perfectly trimmed, its draft is equal both forward and aft, meaning it floats level in the 

water. However, various factors can cause the ship's trim to deviate from this ideal condition. These 

factors include the distribution of cargo, fuel, ballast water, and the presence of passengers. 

The trim of a ship affects its hydrodynamic properties, manoeuvrability, fuel efficiency, and overall safety. 

Improper trim can lead to decreased stability, increased resistance, reduced speed, and difficulties in 

steering the ship. Therefore, maintaining the correct trim is essential for optimal ship performance.  

For such a reason, ship's trim optimization involves adjusting the distribution of weight along the ship's 

length to achieve the most efficient and favourable trim condition. By optimizing the trim, ships can 

reduce resistance, improve fuel efficiency, enhance stability, and ensure a smoother ride. Indeed, the 

mains key aspects of ship's trim optimization are: 

The fuel efficiency: Proper trim optimization can impact a ship's fuel consumption. By achieving the 

optimal trim condition, the ship can reduce resistance and drag through the water, leading to lower fuel 

consumption. This is especially important for long voyages where even small improvements in fuel 

efficiency can result in substantial cost savings and environmental benefits. 
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Resistance reduction: A ship experiences hydrodynamic resistance as it moves through the water. 

Resistance increases with a poorly optimized trim, resulting in higher power requirements and reduced 

speed. By adjusting the trim to the optimal condition, the ship can minimize resistance, allowing it to sail 

more efficiently and at higher speeds. 

The trim of a ship during its navigation can afflict its fuel consumption by going to change the hull 

resistance. For this reason, the ability to change hull resistance as the ship's trim changes has been built 

into the pipeline. 

For this purpose, a generalized model was searched in the literature, as in the previous cases that was 

numerically implementable and emulated the physical behaviour of trim variation. 

Unfortunately, no generalized formulas were found in this case that met the requirements. In fact, almost 

all of the scientific literature pertaining to the topic is based on studies using CFD (computational fluid 

dynamics) [15, 16, 17]. A CFD-based approach is certainly a very rigorous method of study that almost 

perfectly emulates the real physical phenomenon. Unfortunately, the concept of generalization is 

completely lost in this case. For these reasons, it was thought to leave available in the pipeline the 

possibility of including one's own hull-based study and not generalize to other ships. Indeed, in case 

studies on the variation of hull resistance as the trim changes are not available this increment is neglected. 

Moreover, another method to perform the ship's trim optimization is based on a data-driven approach. 

This method involves utilizing advanced technologies, data analysis, and predictive modelling to achieve 

the most efficient trim condition. By leveraging real-time data and historical performance data, ship 

operators can make informed decisions to optimize trim and enhance ship performance. Here's an 

overview of the data-driven approach to ship's trim optimization: 

• Data Collection: The first step is to collect relevant data from various sources onboard the ship, such 

as sensors, gauges, and monitoring systems. This data includes information on the ship's draft, trim, 

speed, fuel consumption, engine performance, weather conditions, and other operational 

parameters. Additionally, historical data from previous voyages is also valuable for analysis. 

• Data Analysis and Modelling: The collected data is then processed and analysed using advanced data 

analytics techniques. Statistical methods and machine learning algorithms can be applied to identify 

patterns, correlations, and relationships between the variables affecting trim optimization. This 

analysis helps to gain insights into the ship's performance under different trim conditions and 

identify potential areas for improvement. 

• Trim Optimization Algorithms: Based on the data analysis, algorithms and models are developed to 

optimize the ship's trim. These algorithms consider factors such as fuel consumption, resistance, 

stability, and seakeeping performance. They can be customized to suit specific ship types, sizes, and 

operational requirements. 

• Real-Time Monitoring and Decision Support: Real-time data from onboard sensors and monitoring 

systems are continuously fed into the trim optimization algorithms. This allows for real-time 

monitoring of the ship's performance and the ability to make informed decisions regarding trim 

adjustments.  

• Performance Prediction and Simulation: Data-driven trim optimization allows for predictive 

modelling and simulation of different trim scenarios. By using historical data and predictive 

algorithms, operators can simulate the effects of various trim adjustments on fuel consumption, 

speed, stability, and other performance parameters. This helps in making informed decisions before 

implementing trim changes. 

This approach has been described in [18] by means of a mixed Gray and Black box approach. 
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Again, a generalized white-box approach is not feasible. In fact, a data-driven approach requires a large 

dataset useful for training the predictive model specific to the vessel under consideration and therefore 

not available to all a priori. The data-driven approach can be used in the case where the owner has 

available a data history and the necessary expertise to create a predictive model based on the history and 

its validation of the model on vessel's data. 

Eventually, the studies show that a maximum to 1% to 4% reduction on fuel consumption can be reached. 

as has been stated in MariEMS European Project [19].  

For such a reason this can be considered negligible, and this approximation is not a serious shortcoming. 

 

3.2.4 Increased Resistance due to Fouling Presence 

An almost equally important aspect is the cleaning and maintenance of the hull and propeller. Indeed, the 

ship's resistances due to wet surfaces are composed of frictional resistance and wave resistance. Friction 

resistance is caused by the flow of water along the hull, for such a reason, the hull should be as smooth 

as possible so that the water can flow quickly and smoothly. Each additional 10𝜇m to 30𝜇m of roughness 

causes a 1% increase in the total resistance of the hull, and as mentioned above, the increase in resistance 

also increases fuel consumption. Normally, a new ship is delivered with a hull roughness of 75𝜇m and 

later, when the ship is taken to dry dock, the hull roughness may be 250𝜇m. Even with good maintenance, 

hull roughness Even with good maintenance, hull roughness can increase from 10 to 25𝜇m per year, 

depending on the hull coating system. 

Hull surface roughness can be divided into two categories, physical and biological. 

In particular, biological roughness (fouling) occurs when an organic growth attaches to the ship's hull.  

For example, light slime covering the entire wetted surface can increase total strength by 7-9%. Heavy 

slough increases resistance by 15-18%, while small barnacles and weeds can increase total resistance by up 

to 20-30% [18]. 

This will be explored further in Section 4 Hull and robotics inspection models, where the role of hull 

inspection and suitable mathematical models to model this phenomenon will be specifically discussed. 

 

3.2.5 Propeller Characteristics Branch 

This section describes how to determine the propeller characteristics in particular how to assess the 

thrust coefficient 𝐾𝑇, torque coefficient 𝐾𝑄 and open water efficiency 𝜂𝑂. 

The first block encountered within the pipeline establishes which model to use for the open water 

diagram assessment. In cases where the shipowner does not know the own propeller data, it can be 

determined using the Wageningen B-Series [20]. 
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Figure 5. Example of B-series open water diagram with several P/D 

The Wageningen Propeller B-Series are used by designers and engineers worldwide. These series 

comprise the open water characteristics of conventional fixed pitch propellers with various numbers of 

blades and blade area ratios for different pitch. For several of these propellers, also the characteristics in 

4-quadrants (positive and negative rpm and positive and negative speed) were published by MARIN in 

the sixties and seventies. Today many ships are equipped with Controllable Pitch Propellers (CPP). 

Both for ships and offshore structures, use is made of ducted CPPs. The thrust-torque performance of 

these units is not only of importance for ship designers but also for accurate analysis of speed trial results 

and manoeuvring simulators. Due to lack of this systematic information for CPPs in such cases, normally 

use is made of the B-series data. The characteristics of CPPs, however, differ substantially from those of 

fixed pitch propellers. For these reasons a Joint Industry Project called “Wageningen Propeller C- and D-

Series” is initiated. For such a reason in the future development to obtain a better approximation of 

ducted and CPP the C and D series will be evaluated. 

3.2.6 Matching Procedure 

Given the propeller characteristic curves, the hull resistance and the engine diagram, matching could be 

performed. Matching is a procedure based on the balance of forces, resistance to motion and propeller 

thrust. To summarize, the two main inputs are the hull resistance and the open water diagram. 

There are several procedures to perform matching, but as far as the case study is concerned, the most 

suitable one is the use of the auxiliary variable 
𝐾𝑇

𝐽2 , since the propeller diameter data is available, but the 

propeller working point per minute is not known. The mathematical procedure is reported hereinafter: 

Begin from the hull resistance, the thrust has been evaluated as follow: 

𝑇𝑠ℎ𝑎𝑓𝑡 =
𝑅𝑡

(1 − 𝑡)𝑝
 ; ∀ 𝑉𝑠ℎ𝑖𝑝  

where: 𝑇𝑠ℎ𝑎𝑓𝑡 is equal to the shaft thrust for every shaft line. This is a symmetry hypothesis between shaft 

line; 𝑝 is the propulsor number; 𝑡 is the thrust deduction factor. 
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Moreover, the formulae that define the thrust coefficient 𝐾𝑇, and the advance coefficient 𝐽, are the 

following: 

𝐾𝑇 =
𝑇𝑠ℎ𝑎𝑓𝑡

𝜌 𝑛𝑝
2𝐷4

    𝑎𝑛𝑑    𝐽 =
𝑉(1 − 𝑤)

𝑛𝑝 𝐷
 

where: 𝜌 is water density, 𝑛𝑝 is the propeller revolution in RPS; 𝐷 is the propeller diameter; 𝑤 is the wave 

factor. Indeed, the 𝐾𝑇 cannot be assess in by using this formula because that the propeller revolution (𝑛𝑝) 

are unknown. For this reason, the variable (
𝐾𝑇

𝐽2 )
ℎ𝑢𝑙𝑙

 has been introduced. 

 

(
𝐾𝑇

𝐽2
)

ℎ𝑢𝑙𝑙

=
𝑇𝑠ℎ𝑎𝑡

𝜌 𝐷2 𝑉2 (1 − 𝑤)2
=

𝑅𝑡

𝜌 𝐷2 𝑝 𝑉2 (1 − 𝑤)2(1 − 𝑡)
 ∀ 𝑉𝑠ℎ𝑖𝑝 

 

As previously stated, the matching is a procedure based on the balance between forces, in particular the 

hull resistance to motion and delivered thrust propeller. For this reason the balance is evaluate between 

(
𝐾𝑇

𝐽2 )
ℎ𝑢𝑙𝑙

 and (
𝐾𝑇

𝐽2 )
𝑝𝑟𝑜𝑝

 by means of interpolation or graphic method, in order to find the equilibrium 

advance coefficient, 𝐽𝑒𝑞.. 

 
Figure 6. Matching procedure 

Starting from the value of 𝐽𝑒𝑞. it is possible to obtain the values of 𝐾𝑇, 𝐾𝑄 & 𝜂𝑂. 

𝑱𝒆𝒒. 
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Starting from the values of 𝐾𝑇, 𝐾𝑄 & 𝜂𝑂 it is possible to evaluate the required power curve. 

𝐾𝑄 =
𝑄𝑜

𝜌 𝑛𝑝
2𝐷5

 →  𝑄𝑜 = 𝐾𝑄  𝜌 𝑛𝑝
2𝐷5 

𝑄𝑜 =  
𝑃𝑜

2 𝜋 𝑛𝑝
→ 𝑃𝑜= 2 𝜋 𝐾𝑄  𝜌 𝑛𝑝

3𝐷5 

𝑃𝐵 =
𝑃𝑜

𝜂𝑅 𝜂𝑆 𝜂𝐺
 

𝑛𝑝 =
𝑉(1 − 𝑤)

𝐽𝑒𝑞 𝐷
 

where:  𝑄𝑜is the open water torque and 𝑃𝑜 is the relative power; 𝜂𝑅 is the rotative relative efficiency; 𝜂𝑆 

is the shaft line efficiency and 𝜂𝐺  is the gear box efficiency (if gearbox is within the propulsive chain). 

In case of a CPP propeller with several P/D the matching procedure is the same, the only exception is that 

it will have to be repeated as many times as the P/Ds considered. Indeed, the result will be as follows with 

a power requested curve for each P/D considered. 
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Figure 7. Matching procedure with CPP 

After choosing the best gear ratio, the CPP matching procedure is concluded. 

 
Figure 8. End of matching procedure 
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3.3 Data-driven Approach Pipeline 

With an opposite philosophy, that of having strongly characterized data on the ship under analysis, a data-

driven model fed by the high-frequency data collected from on-board sensors was evaluated. The 

disadvantages of this approach are the loss of generalization, the goodness of fit of the input data used 

to create the data-driven model strongly influences the result, and, finally, the fact that the data used to 

create the model must cover the entire operational range of the ship, as otherwise the risk is that an 

operational configuration other than the one used for training will be seen as an out-layer. 

In the case of the model fed with data collected in the field using the gray box approach, it was decided 

to analyze the data knowing the assumptions that allow the operational curve to be evaluated using the 

perfect cubic approach. The perfect cubic method is often used when insufficient data are available, but 

at least one working point is known, and it is based on the following assumptions: 

• 𝑅𝑡 = 𝑎𝑉2 hull resistance with a quadratic relation with speed; 

• (1 − 𝑡) , (1 − 𝑤) & 𝜂𝑅 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀ 𝑉; 

• 𝜂𝐺  & 𝜂𝑆 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀ 𝑉; 

•  

These assumptions are easy to respect in a ship operating regime that is displacement. These are no 

longer respected in the case of a planning vessel. Nonnegligible errors are made in assessing resistivity 

for planning boats in which the classic humped pattern, in the hull resistance is present in the pre-planning 

phase. In such boats, resistivity remains valid only for the range of Froude numbers in which it is displaced 

(low speeds). Eventually, under these assumptions there is no longer any correlation with speed 

according to this demonstration. 

 

(
𝐾𝑇

𝐽2
) =

𝑅𝑡

𝜌 𝐷2 𝑝 𝑉2 (1 − 𝑤)2(1 − 𝑡)
=

𝑎 𝑉2

𝜌 𝐷2 𝑝 𝑉2 (1 − 𝑤)2(1 − 𝑡)
=

𝑎

𝜌 𝐷2 𝑝(1 − 𝑤)2(1 − 𝑡)
 

 

In fact, simplifying the velocity from the relationship, it is determined that all other quantities are constant 

𝐾𝑇, 𝐾𝑄 & 𝜂𝑂, and this implies that the relationship linking revolutions to power is in cubic relation to each 

other. 

 

𝑃𝐵 =
2 𝜋 𝐾𝑄  𝜌  𝐷5

𝜂𝑅 𝜂𝑆 𝜂𝐺
 𝑛𝑝

3  →  
2 𝜋 𝐾𝑄 𝜌  𝐷5

𝜂𝑅 𝜂𝑆 𝜂𝐺
= 𝑐𝑜𝑛𝑠𝑡 →  𝑃𝐵 = 𝛽 𝑛𝑝

3 

 

By knowing the theory that binds these quantities, it is possible to use it to obtain the operating curve 

comparable to the theoretical approach in the case of the data-driven approach. In fact, by plotting the 

operating points collected from the sensors, it is possible to perform a 3rd degree polynomial fit on the 

Pb vs. RPM working plane in order to find the relationship between the points. 
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Figure 9. III grade polynomial fit based on HF data. 

 
Figure 10. III grade polynomial fit based on HF data subdivided into group as a function of speed. 

 

Third-degree fitting on the complete cloud of points acquired in high frequency is related to the points 

generated during the navigation of the ship belonging to DANAOS for a navigation period of about two 

months. In addition, clustering techniques were used to compare the original fitting curves with those 

obtained from down-sampling. 

Two methods, k-medoids [21] and k-means [22] were used to make the comparison. Both are based on 

the a priori choice of the number of clusters into which to partition the point cloud, the value of k. For 
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this case study and knowing that the curve is generated by an adaptation of degree III points, it was 

chosen to divide it into 32 clusters. 

The results, as can be seen from the images, are comparable, with differences of negligible magnitude. 

 
Figure 11. K-medoids clustering fitted. 

 
Figure 12. K-means clustering fitted. 
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A potential drawback with this approach is quantifying the effect that the individual elements, 

environmental conditions, and hull, have on the variation in power required by the ship. For example, 

clean hull, no change in trim, and change in weather conditions.  It will only be possible to quantify this 

criticality after the initial analyses have been performed. Moreover, this is highly dependent on the size 

of the database, since it is a sufficiently large database with a lot of historical data.  

3.4 FOC – CO2 Model Architecture 

After showing how to evaluate the ship's demand curve in terms of power versus rpm, several 

approaches to evaluate ship consumption will be shown and discussed below. 

3.4.1 Theoretical Models (White Box Modelling) 

This section illustrates how a FOC estimate can be made on the basis of the High frequency data input 

(velocity measurements) and output (RPM) of the proposed method, in conjunction with basic vessel's 

particulars, and standard Marine-Engineering knowledge.  

 We will illustrate the accuracy of our FOC estimation via comparison with actual FOC data of a container 

ship for different voyages, demonstrate the potential of the proposed method.  

In summary, the proposed FOC estimate can be written as: 

 

𝐹𝑂𝐶 =
2𝜋𝜌 𝐾𝑄(𝐽)𝑛𝑃

3𝐷5 𝑆𝐹𝑂𝐶

𝜂𝐺  𝜂𝑆 𝜂𝑅
  

 
where: 
• 𝜌 is the sea density [1026 kg/m3], 

• SFOC is the Specific Fuel Oil Consumption of the Main Engine per energy unit, which is available by 

the ship owner [g/kWh] provided by engine manufacturer, 

• D is the diameter of the propeller [m],  

•  𝑛𝑃 is the propeller revolution in [rps], 

• 𝜂𝐺  𝜂𝑆 𝜂𝑅 are the gear box (if present), shaft and relative rotative efficiencies, respectively,  

•  KQ(J) is the torque coefficient, depending on the so-called advance coefficient J, further analysed in 

the sequel, both are dimensionless coefficient, 

 

𝑄𝑜 is the open water torque and it is delivered by the Main Engine. For the Wageningen B-series of 

propellers, which are widely used by the Marine-Engineering practitioners, regression analysis of a large-

volume of experimental data produced by the Netherlands Ship Model Basin (NSMB) in Wageningen via 

open-water experiments with 120 propeller models, led to the following regression formula:  

  

𝑄𝑜 = 𝜌 𝐾𝑄(𝐽)𝑛𝑃
2𝐷5  

 

Here KQ(J) is a polynomial function of J provided some further propeller particulars are known, such as 

the pitch over diameter ratio P/D, the number z of propeller blades and the blade-area ratio AE/A0. As it is 

readily seen from Figure 13, the primary parameter for 𝐾𝑄(𝐽) is the advance coefficient 𝐽 
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where VA is speed of advance of the propeller relative to the water in which it is working, which is lower 

than the speed of the vessel $V$. This is expressed by, 

 

                      

 

where w is referred to as the wake fraction coefficient. For ships with one propeller w is normally in the 

range of 0.20 to 0.45. Furthermore, since containerships do not have large block coefficient, we have 

used values w in [0.25, 030] reflecting the fact that the distribution of the water velocity around the 

propeller will not be strongly non-homogeneous. 

 
Figure 13. Thrust, Kt, torque, Kq and efficiency, ηo, coefficients for Wageningen-series three-bladed (z = 3) propellers with 

pitch/diameter (P/D) ratios 0.6, 0.8, 1.0, 1.2 and 1.4 

 

Based on the above, it is concluded that: 

1. Monitoring the velocity V and acquiring or estimating RPM via data driven schemes, we can have a 

good overview of the fluctuation of the advance coefficient J, which constitutes a key indicator of 

the vessel's propulsion system performance.  

2. Using basic propeller particulars and the polynomial regression results provided by [20], enables an 

easy and robust estimation of FOC.  

3. To validate this assertion, we provide in Figure 14 and Table 3 at section 3.5 the actual and predicted 

average FOC of our vessel as calculated by our method, after adjusting transitional speeds 

(acceleration, deceleration) for four different voyages that were not included in the training set. Red 

circles indicate number of observations for a specific range of velocity (Vi +- 0.25) during a voyage. 
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3.4.2  Data Driven Models (Black Box Modelling) 

 

Features related to the prediction task 

The motion of a ship through water requires energy to overcome resistance, i.e., the force working 

against movement. Therefore, FOC is highly impacted by the total resistance of the vessel as it moves 

forward. Total resistance of the vessel incorporates three major components: frictional resistance, wave 

resistance and air resistance. 

The frictional resistance depends on the size of the wetted area of the vessel. It represents often about 

70-90% of the ship total resistance for low-speed ships (bulk carriers and tankers), and sometimes less 

than 40% for high-speed ships (containers and passenger ships). 

Wave Resistance measures the effect of waves and may rise to 30% of the total resistance. The 

characteristics of waves like their amplitude and wave length are determined from the ocean-wave 

spectra along the voyage path.  

Finally, air resistance normally represents about 2% of the total resistance, but for loaded container ships 

in head wind, it can be as much as 10%. 

Based on the above standard marine engineering knowledge we aim to utilize meaningful features that 

have a prominent impact in the total resistance of the vessel like:  

• Features that correspond to the frictional resistance and can be utilized in the context of a Routing 

Optimization algorithm, such as Speed Through Water (STW) and Draft. 

• Features that describe the wave resistance component, such as Wave height/Direction, Wave 

Period, Swell Wave Height/Direction, and Swell Period. 

• Features that model the air resistance component, such as Wind Speed/Direction, Combined Wind 

Wave Height/Direction, and Current Speed/Direction. 

 

In Table 3 below we depict the experimental results from conducting regression analysis in order to rank 

the importance of the aforementioned features in estimating FOC, a process thoroughly described in [57]. 

        

Table 3. Feature Importance 
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The exact process and workflow adopted to conclude to the exact feature set, depicted in Table 3 , is not 

in the scope of this deliverable and is rather part of the broader DT4GS data pre-processing unit described 

in detail in the context of deliverable D2.2 , concerning the Dataspace. 

 

Model implementation 

The dynamic estimation of FOC based on vessel state and environmental conditions can be examined as 

a multivariate time-series prediction problem that takes into account the actual values as well as their 

recent history, and captures the information hidden in the values' evolution over time. 

Based on the superiority of Long Short-Term Memory Neural Network (LSTM) models over traditional 

time-series prediction methods (e.g., ARIMA) [58, 59], LTSMs are chosen as the basis of our solution. 

The initial feature set, collected by AIS and sensor instalments comprises the vessel speed, draft and 

heading and some basic weather features such as wind speed and direction. 

 

In order to take maximum advantage of this feature set, we employ a LSTM architecture, using a pre-

training step that extracts information from the original features, using spline-based regression [60]. In 

what follows, we describe how LSTM is used for FOC estimation and detail the proposed LSTM model 

and its novel aspects. 

 

Utilizing LSTM Neural Network for FOC estimation 

LSTM is a variation of traditional Recurrent Neural Network (RNN) architecture [61], which has been 

extensively used for time-series prediction tasks [62, 64]. 

Unlike standard feed forward neural networks, LSTM also contains feedback connections and can 

process single data points (e.g., images) as well as entire sequences of data (e.g., speech, video or object 

trajectories). Compared to RNNs, Hidden Markov Models and other sequence learning methods, LSTMs 

are not so sensitive to the length of gaps between important events in a time series, which makes them 

preferable in numerous applications. To this end, we adopt an LSTM architecture for the prediction of 

FOC value from the consecutive observation, corresponding to the aforementioned features, in a time 

window, as described in the following paragraphs. 

 

 The input of the LSTM network at timestep tu comprises N time-series, one for each feature of interest 

(speed through water, wind speed, wind angle etc) and in order to use the recent history of values in 

each feature, we employ a fixed-length time-window (time-lag of length $m$). As a consequence, the 

window contains the values for each time step  for the weather and vessel state 

features that are used for the estimation of FOC at time tu , resulting in N time-series, of length m+1, of 

the form , for each feature FN. Given a sequence of consecutive time-

steps, and a multivariate feature set, we get the following correspondence between the input and the 

output of the LSTM: 
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where N is the number of monitored features (and respectively of the time-series fed to the LSTM), m is 

the window length, and Fj(i) is the value of feature  at timestamp ti. FOCi is the FOC value that 

we want to predict. 

3.5 FOC – CO2 Model Reporting – Visualization 

In this section we will first demonstrate results corresponding to different voyages of a real container 

vessel utilizing the aforementioned FOC estimation models described in sections 3.4.1 and 3.4.2. 

  

Dataset 

All the experiments were conducted with real data, from a dataset of an existing container ship vessel 

with a carrying capacity of 3000 TEUs (Twenty-foot Equivalent Unit - unit of cargo capacity used for 

container ships and terminals). The values collected correspond to a vast majority of different round-trip 

voyages at different periods and geographical locations. As a whole, the dataset extracted for the 

purpose of this work, covers a time span of one year (December 2019 - December 2020) with 

approximately 4 * 105 data points. 

In order to examine the statistical significance of our results, we created 10 statistically independent 

subsets extracted from different time periods of approximately 5 * 103 observations each that cover 84 

hours or 3.5 days of the vessel's trip.  

A timeframe large enough to represent all the different states (weather impact/engine state) of the 

vessel during a voyage. From these datasets, 80% was used for training and the rest for testing. 

Statistical independence was preserved between different datasets with the use of the Kolmogorov-

Smirnov test (KS-test). This is a two-sided test for the null hypothesis that 2 independent samples are 

drawn from the same continuous distribution. The dataset used in the context of this work is available, in 

sanitized form, upon request to the first of authors. It contains the values for the features described Table 

3, and their corresponding timestamp. 

 

Theoretical model Performance in different voyages 

In section 3.4.1, we demonstrated a theoretical approach to construct a robust FOC predictive scheme by 

utilizing the speed of the vessel, basic propeller characteristics and polynomial regression formulas to 

extract thrust coefficient (KT) and torque coefficient  (KQ) for a specific vessel. 

To validate this assertion, we provide in Figure 14 and Table 4 the actual and predicted average FOC 

of our vessel as calculated by our method, after adjusting transitional speeds (acceleration, 

deceleration) for four different voyages that were not included in the training set. Red circles indicate 

number of observations for a specific range of velocity (𝑉𝑖 ± 0.25) during a voyage. 
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Figure 14. Actual/Predicted FOC (lt/min) comparison for different legs 

 

 

          

Table 4. Computational performance of the FOC-estimate formula 

  

 

LSTM NN Performance in different voyages 

In this section we evaluate the approximation capabilities of the proposed LSTM-based FOC predictive 

model. This is performed for four different voyages extracted from the initial test set. The voyages 

correspond to different locations, time periods and weather conditions for the same container ship. 

  

To demonstrate the results, we depict, in Figure 15 and Table 5, the deviation between the actual and the 

predicted FOC measured in Metric Tonnes for one day (MT/day), per speed(V) range (+-0.5 V). 

Bar size indicates the number of observations found for a particular speed range. 
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Figure 15. LSTM performance in 4 different voyages of the same container ship 

 

 

Table 5. Computational performance of the FOC-model (LSTM) 

 
 

 

Computational performance superiority of the LSTM neural network model, as presented above, allows 

us to utilize it in the context of a weather routing optimization algorithm. 

 

3.6 CO2 Emissions Model 

After describing how the ship's demand curve (engine rpm vs engine power) can be evaluated under 

varying boundary conditions and showing different approaches for estimating consumption, it is possible 

to introduce the modelling that allows estimating the emission of greenhouse gases into the atmosphere, 

particularly CO2. 

In detail, the International Maritime Organization (IMO) has established guidelines related to CO2 

emissions under the MARPOL Annex VI [63]. These guidelines are aimed at reducing greenhouse gas 
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emissions from ships. However, it's important to note that the IMO guidelines do not provide a simple 

correlation factor for CO2 emissions but rather establish regulatory measures and standards to control 

and reduce emissions. 

MARPOL Annex VI is an international convention that sets out regulations for the prevention of air 

pollution from ships. It includes provisions related to sulfur oxide (SOx) emissions, nitrogen oxide (NOx) 

emissions, and greenhouse gas emissions, including CO2. 

The IMO has adopted specific Energy Efficiency Design Index (EEDI) and Ship Energy Efficiency 

Management Plan (SEEMP) requirements to address CO2 emissions from ships. The EEDI sets energy 

efficiency standards for new ships, considering their size and type, and aims to promote the use of more 

energy-efficient technologies. The SEEMP is a management plan that helps ship operators improve 

energy efficiency throughout the ship's operational life. 

The guidelines also encourage the use of alternative fuels, such as liquefied natural gas (LNG), to reduce 

CO2 emissions. LNG has lower carbon content compared to traditional marine fuels like heavy fuel oil, 

which helps reduce greenhouse gas emissions. 

While the IMO guidelines provide a framework to reduce CO2 emissions, the specific correlation factor 

for CO2 emissions would depend on various factors such as the ship's size, type, fuel consumption, and 

operational efficiency. It's important to note that the correlation between CO2 emissions and these 

factors is not a simple linear relationship but rather a complex interplay of multiple variables. 

However, the CO2 emissions from ships are typically calculated based on fuel consumption and the 

carbon content of the fuel used. The formula used to estimate CO2 emissions can be expressed as follows: 

 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑥 𝐶𝑎𝑟𝑏𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑒𝑙 

 

The fuel consumption is usually measured in metric tons or metric tonnes (t), and the carbon content of 

the fuel is expressed in terms of the amount of carbon dioxide (CO2) produced per unit of fuel. This 

carbon content can vary depending on the type of fuel used, such as heavy fuel oil, marine diesel oil, 

liquefied natural gas (LNG), or other alternative fuels. 

It's important to note that the actual calculation of CO2 emissions may involve additional considerations, 

such as the energy efficiency of the ship, operational factors, and specific measurement methodologies. 

These factors can vary depending on the specific guidelines and regulations in place. 

In detail, the carbon content of different fuels used in the shipping industry can vary.  

Hereinafter, are some general estimates of the carbon content for common marine fuels: 

• Heavy Fuel Oil (HFO): Heavy fuel oil is a residual fuel derived from crude oil. Its carbon content is 

approximately 3.1 metric tons of CO2 per metric ton of fuel. 

• Marine Diesel Oil (MDO) and Marine Gas Oil (MGO): These are lighter distillate fuels compared to 

heavy fuel oil. The carbon content of MDO and MGO is around 3.2 metric tons of CO2 per metric ton 

of fuel. 

• Liquefied Natural Gas (LNG): LNG is a cleaner-burning fuel compared to conventional marine fuels. 

Its carbon content is significantly lower, approximately 2.75 metric tons of CO2 per metric ton of 

fuel. It should be noted that LNG emits fewer CO2 emissions during combustion, but there are other 

considerations regarding methane slip during storage and handling. 

• Methanol: Methanol is an alternative marine fuel that can be produced from natural gas or 

renewable sources. Its carbon content is approximately 1.5 metric tons of CO2 per metric ton of fuel. 
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• Ethanol: Ethanol is another renewable fuel option. Its carbon content is approximately 2.2 metric 

tons of CO2 per metric ton of fuel. 

It's important to note that the carbon content values provided are estimates and can vary depending on 

the specific composition and production methods of the fuel. Additionally, the carbon content of 

alternative fuels can differ significantly from conventional fossil fuels, contributing to lower carbon 

emissions. 
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4 Navigation Management Models 

4.1 Literature Overview 

Navigation optimization algorithms are a class of algorithms that are used to optimize the performance 

of navigation systems. These algorithms can be applied to a wide range of navigation systems, including 

land, sea, and air navigation systems. Navigation optimization algorithms can be used to improve the 

efficiency and safety of navigation systems by reducing the risk of collisions, reducing fuel consumption, 

and improving the overall performance of the navigation system. 

In recent years, there has been a significant amount of research on navigation optimization algorithms, 

with many different algorithms proposed in the literature. Some of the most popular navigation 

optimization algorithms include: 

 

Genetic Algorithms (GA) are optimization algorithms that are based on the principles of natural selection 

and genetics. They are particularly well-suited for solving problems that are difficult to solve using 

traditional optimization algorithms [23]. 

A* algorithm is a popular algorithm for pathfinding and graph traversal. It uses a heuristic function to 

estimate the cost of reaching the goal and to guide the search process [24]. 

Dijkstra's algorithm is algorithm is similar to A*, but it does not use a heuristic function. Instead, it 

explores all possible paths from the start to the goal and selects the path with the lowest cost [25]. 

Rapidly exploring Random Tree (RRT), is an algorithm used for motion planning in high-dimensional 

configuration spaces. It creates a tree-like structure of possible paths and uses random sampling to 

explore the space and find the optimal path [26]. 

Particle Swarm Optimization (PSO) is an optimization algorithm that is inspired by the behavior of 

swarms of birds or fish. It is a population-based algorithm that can be used to find the global minimum of 

a function [27]. 

Ant Colony Optimization (ACO) is an optimization algorithm that is inspired by the behavior of ant 

colonies. It is a population-based algorithm that can be used to find the global minimum of a function 

[28]. 

 

These are just a few examples of navigation optimization algorithms that have been proposed in the 

literature. Each of these algorithms has its own strengths and weaknesses and is suitable for different 

types of navigation systems and different types of optimization problems. 

Eventually, a navigation algorithm has not been chosen at this time, and further analysis needs to be 

conducted to assess which is the best option for the case study.  Eventually, the most promising 

approaches seem to be the first ones listed, namely, A* & RRT. 

4.2 Promising Navigation Optimization Algorithms 

As already mentioned earlier the most promising and suitable algorithms for the case study under 

consideration are certainly A* and RRT.  
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A* (pronounced "A-star") is a popular pathfinding algorithm used to find the shortest path between two 

points on a graph or map. It is an informed search algorithm, meaning that it uses heuristics to guide its 

search towards the goal. 

The A* algorithm maintains two lists: the "open list" and the "closed list". The open list contains nodes 

that have been visited but have not yet been fully explored, while the closed list contains nodes that have 

been fully explored. The algorithm starts by adding the starting node to the open list. 

At each iteration, the algorithm selects the node on the open list with the lowest cost (the sum of the 

cost to reach that node and the estimated cost to reach the goal from that node), removes it from the 

open list, and adds it to the closed list. It then expands the node by generating its neighbouring nodes 

and adding them to the open list if they have not already been visited. The cost of each neighbouring 

node is calculated as the sum of the cost to reach the current node and the cost to move from the current 

node to the neighbouring node. 

A* uses a heuristic function to estimate the cost from the current node to the goal. The heuristic function 

must be admissible, meaning that it never overestimates the actual cost to reach the goal, and consistent, 

meaning that the estimated cost from a node to its neighbour plus the cost from the neighbour to the 

goal is never less than the estimated cost from the node to the goal. 

The algorithm continues to iterate until either the goal node is found, or the open list is empty. If the goal 

node is found, the algorithm reconstructs the path from the starting node to the goal node using the 

parent pointers stored in each node. If the open list is empty and the goal node has not been found, then 

there is no path from the starting node to the goal node. 

In the marine sector, A* path planning is commonly used in autonomous underwater vehicles (AUVs) and 

unmanned surface vehicles (USVs) to navigate through underwater or surface environments. AUVs and 

USVs are used for various applications, such as oceanographic research, marine surveying, environmental 

monitoring, and offshore oil and gas exploration. 

A* path planning can be used to help AUVs and USVs avoid obstacles, plan efficient routes, and navigate 

through complex underwater or surface environments. The algorithm can take into account factors such 

as current, water depth, and the presence of other vehicles or obstacles. 

One application of A* path planning in the marine sector is in the field of oceanographic research. AUVs 

can be used to collect data on ocean currents, temperature, and salinity, which can be used to study 

ocean circulation and climate change. A* path planning can help the AUVs navigate through the ocean 

efficiently and avoid obstacles such as undersea mountains and canyons. 

In the shipping industry, A* path planning can be used to optimize ship routes and avoid collisions. Ships 

can use real-time data such as weather conditions, ocean currents, and traffic density to calculate the 

most efficient route to their destination. A* path planning can also help ships avoid collisions with other 

vessels or obstacles in the water. 

In particular, the A* algorithm uses two main equations to determine which node to visit next: 

 

𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛) 

 

where: 𝑓(𝑛) represents the total cost of node n; 𝑔(𝑛) is the cost to travel from the starting node to node 

n and ℎ(𝑛) is the estimated cost to travel from node n to the goal node. This equation is known as the "f-

cost" equation and is used to prioritize which node to visit next. 
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𝑔(𝑛′)  =  𝑔(𝑛)  +  𝑐(𝑛, 𝑛′) 

 

𝑔(𝑛′) represents the cost to travel from the starting node to the neighbouring node n', where 𝑐(𝑛, 𝑛′) is 

the cost to move from node n to n'. This equation is used to calculate the cost of each neighboring node 

and is used to update the parent pointer of each neighbouring node to point to the current node. 

The A* algorithm also uses a heuristic function, which is used to estimate the cost from a given node to 

the goal node. The heuristic function is denoted as ℎ(𝑛) and must be admissible (i.e., it never 

overestimates the actual cost to reach the goal) and consistent (i.e., the estimated cost from a node to 

its neighbour plus the cost from the neighbour to the goal is never less than the estimated cost from the 

node to the goal). The choice of heuristic function can greatly affect the efficiency and accuracy of the A* 

algorithm. 

The other interesting method is the RRT a popular path planning algorithm used in robotics and motion 

planning. RRT* (RRT-star) is an improved version of the RRT algorithm that uses a more optimal tree 

structure and a better cost function to find a higher-quality path. 

In RRT*, the algorithm maintains a tree structure that grows iteratively from the starting point towards 

the goal. The algorithm generates random nodes in the search space and extends the tree towards the 

new node. The tree is built incrementally by selecting the node in the tree that is closest to the new node 

and adding a new node in the direction of the new node. The algorithm continues to extend the tree until 

the goal is reached or a maximum number of nodes have been added to the tree. 

In RRT*, the cost of each node is calculated using the "backtracking" technique. This technique involves 

calculating the cost of a node by considering its parent node and the cost of moving from the parent node 

to the current node. The cost of a node is the sum of the cost of its parent and the cost of the transition 

to the current node. 

The RRT* algorithm improves upon the RRT algorithm by introducing a better cost function and a more 

optimal tree structure. RRT* uses a cost function that takes into account the cost of the path to the node, 

as well as the distance from the node to the goal. This cost function encourages the algorithm to explore 

the search space more efficiently and find higher-quality paths. 

RRT* also uses a more optimal tree structure that balances the trade-off between exploration and 

exploitation. The algorithm uses a "rewiring" step that connects nearby nodes to the tree and updates 

the parent-child relationships of nodes to improve the overall cost of the tree. 

Moreover, RRT* is an "anytime" algorithm, which means that it can return a solution at any time during 

the search. This can be useful in applications where it is important to quickly find a feasible path, even if 

it is not optimal. The algorithm can then continue searching to improve the quality of the path. 

Another crucial characteristic of RRT* method is that can also be extended to handle multiple objectives, 

such as minimizing travel time, energy consumption, or risk of collision. This is done by using a multi-

objective cost function and finding the Pareto-optimal solutions, which are the paths that cannot be 

improved in one objective without sacrificing the other objectives. 

Overall, RRT* is a versatile algorithm that can be applied to a wide range of path planning problems. Its 

ability to handle high-dimensional search spaces and complex environments makes it a popular choice in 

robotics and motion planning research. 
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4.3 COLREG Rules 

Speaking of navigation algorithms, i.e., path planning, it is necessary to introduce the concept of COLREG 

rules if route re-planning is to perform a dynamic function, operating in real time during navigation, i.e., 

suggesting a route that ensures collision between two vessels. 

In detail, The COLREG rules, short for "International Regulations for Preventing Collisions at Sea," is a set 

of rules established by the International Maritime Organization (IMO) to prevent collisions between 

vessels at sea. The COLREG rule applies to all vessels, regardless of size, type, or nationality, when they 

are in international waters or in the waters of a country that has adopted the rule. 

The COLREG rule is designed to ensure that all vessels navigate safely and avoid collisions, regardless of 

their size or type. The rule emphasizes the importance of maintaining a proper lookout, taking action to 

avoid collisions, and using lights, sounds, and signals to communicate with other vessels. It also 

establishes a hierarchy of vessels, with larger vessels having the right of way over smaller vessels. 

Violating the COLREG rule can result in serious consequences, such as fines, imprisonment, or even loss 

of life. Therefore, it is important for all mariners to be familiar with the rule and to follow its provisions in 

all circumstances. 

The main types of approach between ships in the COLREG rules are defined as follows: 

• Head-on approach: This is when two vessels are approaching each other in such a manner that there 

is a risk of collision if both vessels maintain their course and speed. In this situation, both vessels 

must alter their course to starboard (right) so as to pass port-to-port. 

• Crossing situation: This is when two vessels are crossing each other's course in such a manner that 

there is a risk of collision if both vessels maintain their course and speed. In this situation, the vessel 

which has the other vessel on its starboard side must give way and take early and substantial action 

to avoid collision. 

• Overtaking situation: This is when one vessel is overtaking another vessel in such a manner that there 

is a risk of collision if both vessels maintain their course and speed. In this situation, the vessel that 

is being overtaken has the right of way and should maintain its course and speed while the 

overtaking vessel should keep out of the way of the vessel being overtaken. 

 

Eventually, the COLREG rule provides specific guidance on the actions that vessels should take in each of 

these situations in order to ensure the safety of all vessels involved. For such a reason it is mandatory 

develop a navigation algorithm COLREG complied if route re-planning is to perform a dynamic function, 

operating in real time during navigation. 

An example of this approach was achieved using RRT*. Dynamically for each instant the ship recalculated 

the path so as to circumvent fixed and moving obstacles (other ships). The information used to determine 

the speed and position of other ships was obtained from the AIS device readings [29,30,31]. 

 

4.4 Navigation Management Models Repository  

In the following sections we describe briefly the project on-going repository on Path Planning/ Weather 

Routing optimization models that aims to act as the cornerstone to transcend beyond SOTA Voyage 

Planning solutions and offer a versatile platform towards a zero-emission operational blueprint.  
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4.4.1 Shortest Path Extraction  

Project partner DANAOS has developed a baseline approach in order to derive shortest path routes based 

on user-defined origin/ destination waypoints via an API call. The methodology adopted is based on 

AtoBviaC 1library which provides offline access to distances and routes from the AtoBviaC route network. 

More specifically the algorithm transcends beyond the “trivial” shortest path finding problem by 

incorporating a variety of constraints concerning sensitive aquaculture, piracy zones and ECA/SECA areas. 

These constraints are included in the algorithm by applying appropriate weighting on the graph provided 

by AtoBviaC library. The dedicated API call with a detailed list of parameters to generate a candidate 

shortest path between two waypoints is presented in Figure 16 in the swagger UI. 

 
Figure 16. Swagger UI for the dedicated shortest path API call 

 

Once the origin and destination waypoints have been defined, the AtoBviaC library can be used to 

calculate the shortest path route between them. This is achieved using a variant of the Dijkstra algorithm, 

which is a graph search algorithm that is used to find the shortest path between two nodes in a graph.  

In addition to finding the shortest path, the algorithm incorporates the aforementioned constraints by 

modifying the weights of the edges in the graph. For example, edges that pass through sensitive 

aquaculture areas can be given a higher weight, making them less likely to be included in the shortest 

path. Similarly, edges that pass-through piracy zones or ECA/SECA areas can be given a higher weight to 

avoid them whenever possible. 

 
1 https://autobviac.com 
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Once the weights of the edges have been determined, the algorithm can be run to find the shortest path 

route between the user's origin and destination waypoints while taking into account the constraints 

imposed by sensitive aquaculture, piracy zones, and ECA/SECA areas.  

Eventually, the results can be presented to the user in a user-friendly format, such as a map or a list of 

waypoints along the route. The user can then modify the route as necessary, for example, by adding or 

removing waypoints, to optimize the route further.  

In the following figure we demonstrate the result of the API call utilizing the dedicated DT4GS GUI for an 

example route between port Tamp (FL) and port Tange Med (MR). 

 

 
Figure 17. Shortes path between TAMPA – TANGER MED 
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5 Integrated Modelling Framework for Ship Performance 

improvement 

In the Voyage optimization pipeline the main inputs are the mission to be accomplished by the ship, in 

terms of time and place of port departure and arrival, and the weather conditions that will be 

encountered along the route. 

The route can be divided into several legs to estimate the speed it will need to maintain along the route 

of a single leg. 

In the context of voyage optimization, the weather routing module and the Just in time (JIT) model can 

be observed. 

 
Figure 18. pipeline voyage optimization 

 

5.1 Weather Routing Model 

In detail, the weather routing model is the process of optimizing a vessel's route and speed to avoid 

hazardous weather conditions while minimizing fuel consumption and maximizing the safety of the crew 

and cargo. Weather routing involves analyzing weather data, including wind, wave height, current, and 

other factors, to determine the most efficient and safe route for a vessel to take. 

The primary goal of weather routing is to minimize the time and distance required for a vessel to reach 

its destination, while also ensuring the safety of the crew and cargo. This involves taking into account 

factors such as the vessel's size, speed, and maneuverability, as well as the weather conditions it may 

encounter along its route. 

Modern weather routing technology uses advanced computer models and algorithms to analyze weather 

data in real-time, allowing vessel operators to make informed decisions about their route and speed. This 

technology can also provide alerts and recommendations based on changing weather conditions, helping 

operators to avoid dangerous weather and adjust their route as needed. 
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There are different approaches to implementing weather routing on-board a vessel, depending on the 

vessel type and available technology. However, the main approach typically involves the following steps: 

1. Gathering weather data: Real-time weather data is collected from various sources, such as weather 

satellites, buoys, and weather models. This data is used to create a weather forecast for the vessel's 

intended route. 

2. Analyzing weather data: The weather data is analyzed using advanced algorithms to predict how 

weather conditions will affect the vessel's speed, fuel consumption, and safety. This analysis takes 

into account the vessel's characteristics, such as its size, speed, and maneuverability. 

3. Generating a route plan: Based on the weather analysis, a route plan is generated that optimizes the 

vessel's route and speed to minimize fuel consumption, reduce voyage time, and avoid hazardous 

weather conditions. The plan takes into account factors such as wind, waves, currents, and other 

hazards. 

4. Monitoring weather conditions: Throughout the voyage, the crew monitors weather conditions and 

adjusts the vessel's route and speed as needed to avoid dangerous conditions and optimize fuel 

consumption. 

A potential mathematical approach, using optimization techniques, to optimize a ship's route with 

weather routing has been reported hereinafter: 

 

Define Variables: 

Let 𝑅 be the set of possible route segments, each representing a potential path between two waypoints. 

Let 𝑥ᵣ be a binary variable indicating whether route segment r is included in the optimized route. 

Let 𝑑ᵣ be the distance of route segment r. 

Let 𝐹ᵣ be the fuel consumption associated with route segment r. 

Let 𝑊ᵣ be a weather factor associated with route segment r, representing the adverse effects of weather 

conditions. 

 

Set Objective Function: 

Define the objective function to be minimized, considering fuel consumption and weather effects: 

Minimize: ∑(𝑥ᵣ ∗  𝐹ᵣ ∗  𝑊ᵣ) 

 

Subject to Constraints: 

Connectivity Constraint: Ensure that the optimized route is a connected sequence of route segments. 

∑(𝑥ᵣ)  =  1 for each waypoint except the initial and final waypoints. 

Time Constraint: Set a maximum time constraint for the voyage, if applicable. 

∑(𝑥ᵣ ∗  𝑑ᵣ)  ≤  𝑇𝑚𝑎𝑥 

Weather Avoidance Constraint: Avoid route segments with adverse weather conditions, if possible. 

𝑥ᵣ =  0 𝑓𝑜𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑊ᵣ >  𝑊_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Vessel Performance Constraints: Consider the vessel's performance limitations, such as maximum speed 

or stability requirements. 

Additional constraints can be added based on vessel-specific considerations. 
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Solve the Optimization Problem: 

Formulate the optimization problem as a mixed-integer linear program (MILP) or nonlinear program 

(NLP), depending on the complexity of the problem and the desired level of accuracy. 

Utilize optimization solvers or software packages to solve the formulated problem and obtain the optimal 

route solution. 

 

Analyze and Validate Results: 

Analyze the obtained optimized route and assess its feasibility and practicality. 

Consider any additional factors or constraints not included in the optimization model that may affect the 

route selection. 

Validate the results by comparing them with expert knowledge or previous successful routes. 

 

Continuous Monitoring and Updates: 

Weather conditions may change during the voyage, requiring route adjustments. 

Continuously monitor weather forecasts and update the route plan accordingly using the same 

optimization approach. 

 

This mathematical approach provides a framework for systematically optimizing the ship's route 

considering fuel consumption, weather conditions, and other constraints. However, the implementation 

may require customization and fine-tuning based on the specific needs and available data for the weather 

routing problem at hand. 

An example, to benchmark further the approach shown in 4.4.1, we demonstrate in this section a novel 

weather routing algorithm to support vessel routing decisions towards the reduction of FOC. The WR 

algorithm that has been utilized is based on the isochrone principle. It builds upon a predetermined basic 

route; this route can be the original route planned by the vessel's master or provided by a basic routing 

algorithm (like the method proposed in the previous section). In the context of this work an initial route 

was employed on the basis of shortest path principles. The original (initial) route is then broken into 

segments, with respect to a given time step (indicating the master's routing decision horizon, e.g., every 

6 hours), and a graph is built around it that enables course and speed deviations, while ``following'' the 

direction of the vessel's original course. To this end, for each node of the original route, a set of nodes is 

added in a ‘’parallel’’ fashion on both sides of the route (i.e., parallel to the direction of the original route). 

Edges are added between all nodes of subsequent sets. Note that nodes that are identified to be on land 

as well as edges that go above land segments are naturally excluded from the graph.   

Once the graph is created (Figure 19), a data driven FOC model that is demonstrated in section 7, is used 

to obtain the FOC of each edge of the graph, i.e., of each corresponding sea route, given the vessel's STW, 

draft and corresponding weather conditions along that sea route. After scoring each sea route (i.e., graph 

edge), a variation of Dijkstra's algorithm for the shortest path problem is utilized to obtain the route that 

minimizes the total route FOC (i.e., considering the calculated FOC of each edge as its corresponding 

``edge weight'' or ``distance'').  

Note that since the algorithm is isochrone, the produced route also satisfies any constraints concerning 

the time of arrival (if any).  
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Note also that the decision variables for the WR algorithm are only the STW and the vessel's direction, 

since these are the aspects that the vessel's master can control. Obviously, any change in the vessel's 

speed affects directly FOC (since STW is a basic feature of the corresponding model). However, changes 

in speed and direction also affect FOC indirectly since they alter the spatio-temporal state of the vessel 

and hence the corresponding weather conditions. 

 

 
Figure 19. Graph construction comprised of alternative waypoints (red circles) for an example route. 

We continue by demonstrating the results of the WR optimization algorithm explained briefly above. We 

compare the total FOC of an initial transatlantic voyage conducted by the vessel's master, with the 

suggested optimized route produced from the WR algorithm by utilizing the aforementioned LSTM FOC 

model. Furthermore, we calculate the total distance travelled, the estimated time of arrival, the average 

speed and the emissions emitted for the two alternative routes by incorporating Figure 20, and we exhibit 

the results in Table 6.  

Consecutively we demonstrate the weather [wind speed (m/s)] of the initial and the optimized route per 

hour, in Figure 20. 

 

 
Figure 20. Initial (blue) and Optimized (red) route for one leg: TAMPA (FLORIDA U.S) - TANGER MED (MOROCCO) 
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Table 6. Estimation based on Weather Service (NOAA) 

 
 

It is evident from Table 6 above that by utilizing an advanced WR algorithm we are able to further 

optimize the shortest path route explained  in 4.4.1 and provide a fine-grained optimal, route in terms of 

speed, ETA and overall environmental footprint (overall CO2 emitted).   

 

Eventually, weather routing is particularly important in the shipping industry, where large vessels must 

navigate through often unpredictable weather conditions to transport goods across the world's oceans.  

Several approaches are available in the literature, some of which perform route optimization not only in 

terms of waypoint displacement, but also in terms of route speed [32, 33]. Indeed, by optimizing routes 

and speeds, weather routing technology can help shipping companies reduce fuel consumption and 

emissions, lower operating costs, and improve the overall efficiency and safety of their operations. In the 

approach shown, ship speed was not taken into account because this aspect was evaluated in the just-in-

time module. 

5.2 Just in Time (JIT) Model 

In the marine sector, the "just-in-time" model refers to an approach that aims to optimize navigation time 

and vessel arrival schedules. It involves coordinating the movement of vessels to minimize waiting times 

at ports and maximize efficiency in the maritime supply chain. 

Traditionally, vessels arriving at ports have been subject to fixed schedules and must adhere to 

predetermined arrival times. However, the just-in-time model recognizes that these fixed schedules often 

lead to inefficient operations, with vessels spending significant time waiting at ports before they can 

unload or load cargo. 

To overcome these inefficiencies, the just-in-time model leverages advanced technologies and data 

sharing between various stakeholders, such as port authorities, shipping companies, and terminal 

operators. This allows for improved coordination and real-time information exchange, enabling vessels 

to arrive at ports at the most optimal time. 

For example, by using an advanced planning and scheduling is possible to perform an accurate estimation 

of vessel arrival times. Indeed, by considering factors such as weather conditions, sea currents, traffic 

congestion, and berth availability the most favourable time for a vessel to arrive at the port can be assess. 
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It is crucial that stakeholders share relevant data in real-time, including vessel positions, port conditions, 

and cargo availability. This information exchange facilitates efficient planning and decision-making, 

allowing vessels to adjust their speed and course to maintain the scheduled arrival time. 

Indeed, the just-in-time model requires collaboration among different parties involved in the maritime 

supply chain. This includes vessel operators, port authorities, pilots, tug operators, and terminal 

operators. By working together, they can optimize operations, reduce congestion, and minimize waiting 

times for vessels. 

The main advantage by using this approach is the optimization of vessel speed, indeed, the just-in-time 

model considers the optimal speed for vessels to maintain throughout their journey. By adjusting the 

speed based on factors like traffic congestion, weather conditions, and port schedules, vessels can arrive 

at their destination at the most appropriate time. This optimization helps minimize waiting times and 

improve overall efficiency. 

The optimization of the speed archives three importance aims: 

• Improved Operational Efficiency: The just-in-time model optimizes vessel schedules and arrival 

times, reducing waiting times at ports and improving overall operational efficiency. It helps vessels 

minimize idle time and ensures that necessary resources are available when needed, leading to 

streamlined processes and reduced costs. 

• Cost Savings: By minimizing waiting times and optimizing navigation, the just-in-time model can 

result in significant cost savings for shipping companies and port operators. Reduced fuel 

consumption, improved berth utilization, and efficient cargo handling contribute to lower 

operational costs. 

• Environmental Benefits: The model supports sustainability goals by reducing fuel consumption and 

greenhouse gas emissions. Optimized navigation and reduced waiting times lead to lower carbon 

footprints, aligning with global efforts to mitigate climate change and improve environmental 

performance in the maritime sector. 

 

Nowadays, the used methodology is called "hurry up and wait". It is a scheduling and operational 

approach that involves assigning fixed arrival times for vessels at ports or other facilities. In this method, 

vessels are required to hurry or expedite their journey to reach the designated location by the specified 

time. However, despite the urgency and the need to hurry, vessels often experience delays and periods 

of waiting once they arrive at the intended destination. These waiting periods can vary in length and occur 

due to various reasons, such as limited berth availability, congestion at the port, customs clearance 

processes, or other operational constraints. 

The "hurry up and wait" method has been criticized for its inefficiencies and potential negative impacts 

on operational performance. Some drawback of this approach is, for example, that vessels may arrive at 

the port before their scheduled berthing time, leading to idle periods where resources, such as berths, 

cranes, and labour, are underutilized. This can result in wasted time and increased costs. 

Moreover, fixed arrival times can lead to congestion at ports when multiple vessels arrive simultaneously 

or when there is a delay in berthing. This congestion can cause further delays and disruptions in the overall 

supply chain. 

It is worth noting that the "hurry up and wait" approach may have been more prevalent in the past when 

technology and real-time information sharing were not as advanced. In recent years, there has been a 

shift towards adopting more dynamic and flexible scheduling models, such as the just-in-time model, to 

optimize vessel arrival times and minimize waiting periods. 
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Figure 21. Comparison between Just in Time and Hurry up & Wait methods [34] 

 

The benefits of implementing the just-in-time model in the marine sector are numerous. It can help reduce 

fuel consumption and greenhouse gas emissions by minimizing unnecessary vessel idling time. It also 

enhances operational efficiency by reducing congestion at ports, improving berth utilization, and 

optimizing cargo handling processes. Moreover, the model can enhance reliability and predictability in 

the maritime supply chain, leading to better planning and cost savings for shipping companies and port 

operators. 

By knowing the legs, by the several waypoints (𝑥𝑛) of the route and the scheduled time it is possible to 

evaluate the distance by means of the Haversine Formula and evaluate the ship’s speed mean (𝑉𝑚𝑒𝑎𝑛) for 

the route. The optimization consists of to change the value of the speed in single leg, decreasing it, to 

achieve the request time of arrival by this it is possible to reduce the fuel oil consumption. 

 

𝑥𝑛−1 {
𝑙𝑎𝑡𝑖𝑛𝑖 [𝑟𝑎𝑑]
𝑙𝑜𝑛𝑖𝑛𝑖 [𝑟𝑎𝑑]

    ;  𝑥𝑛 {
𝑙𝑎𝑡𝑓𝑖𝑛 [𝑟𝑎𝑑]

𝑙𝑜𝑛𝑓𝑖𝑛 [𝑟𝑎𝑑]
    

 

𝑎 = sin (
𝑙𝑎𝑡𝑓𝑖𝑛 − 𝑙𝑎𝑡𝑖𝑛𝑖

2
)

2

+ cos(𝑙𝑎𝑡𝑖𝑛𝑖) cos(𝑙𝑎𝑡𝑓𝑖𝑛) sin (
𝑙𝑜𝑛𝑓𝑖𝑛 − 𝑙𝑜𝑛𝑖𝑛𝑖

2
)

2

 

𝑐 = 2 atan (
√𝑎

√1 − 𝑎
) 

 

𝑑𝑖𝑠𝑡𝑙𝑒𝑔 𝑛 = (𝑥𝑛 − 𝑥𝑛−1) = 𝑐 𝑅𝑒𝑎𝑟𝑡ℎ 

 

where, 𝑅𝑒𝑎𝑟𝑡ℎ is the mean radium of the Earth equal to 6371 km. 

𝑉𝑚𝑒𝑎𝑛 =
1

𝑁
∑

(𝑥𝑛 − 𝑥𝑛−1)

(𝑡𝑛 − 𝑡𝑛−1)

𝑁

𝑖=1
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Eventually, the implementation of the just-in-time model requires close collaboration and coordination 

among various stakeholders. It may involve overcoming challenges related to data privacy, 

standardization, and ensuring the compatibility of systems and processes across different entities. 

However, with the advancements in technology and increased emphasis on sustainable and efficient 

operations, the just-in-time model holds significant potential for optimizing navigation time in the marine 

sector. 

 

5.3 Trade-off Between JIT and Weather Routing 

The trade-off between weather routing and just in time (JIT) method is an important consideration for 

companies involved in marine transportation. While weather routing can help vessels avoid hazardous 

weather conditions and optimize their routes to save time and fuel, JIT emphasizes the importance of 

delivering goods to their destination precisely on time, without unnecessary delays or inventory build-up. 

There are several factors to consider when balancing these two approaches, including: 

• Cost: JIT can be more costly due to the need for faster and more frequent deliveries, while weather 

routing can help reduce fuel consumption and lower transportation costs. 

• Safety: Weather routing prioritizes safety by avoiding hazardous weather conditions, while JIT may 

require vessels to take risks to meet tight delivery schedules. 

• Reliability: JIT requires precise timing and coordination between suppliers, shippers, and receivers, 

while weather routing may involve delays due to weather conditions, which could affect the 

reliability of delivery schedules. 

• Flexibility: Weather routing allows for more flexibility in terms of adjusting delivery schedules to 

avoid dangerous weather, while JIT relies on strict schedules and may not allow for much flexibility. 

• Ultimately, the choice between weather routing and JIT depends on the specific needs and goals of 

the company. Some companies may prioritize speed and reliability and opt for JIT, while others may 

prioritize safety and efficiency and choose weather routing. In some cases, companies may use a 

combination of both approaches to balance the benefits and trade-offs of each method. 

 

In addition to the factors mentioned earlier, there are other important considerations when balancing 

weather routing and JIT, including: 

Customer expectations: The expectations of customers for timely delivery can also influence the decision 

between weather routing and JIT. If customers place a high priority on fast and reliable delivery, JIT may 

be the preferred approach, even if it comes with higher costs and risks. 

Risk tolerance: Companies with a low risk tolerance may prefer weather routing to minimize the risks 

associated with hazardous weather conditions, while companies with a higher risk tolerance may be 

willing to take more risks to meet delivery schedules. 

Market competition: The level of competition in the market can also influence the choice between 

weather routing and JIT. If competitors are offering fast and reliable delivery, companies may need to 

implement JIT to remain competitive, even if it comes with higher costs and risks. 

In general, the voyage optimization involves integrating various factors, this approach can help vessels 

to minimize fuel consumption, reduce voyage time, and ensure timely delivery of goods to their 

destination. 
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In the context of JIT delivery and weather routing, voyage optimization involves balancing the competing 

demands of timely delivery and safe, efficient navigation. For example, if weather conditions are 

hazardous, the vessel may need to adjust its route to avoid these conditions, even if it means delaying 

delivery. On the other hand, if delivery is time-sensitive, the vessel may need to take more risks and 

navigate through hazardous weather conditions to meet the delivery schedule. 

Voyage optimization can help companies to achieve a balance between JIT delivery and weather routing 

by providing a data-driven approach to voyage planning and execution. By integrating various factors and 

optimizing the voyage plan accordingly, companies can reduce transportation costs, improve reliability 

and efficiency, and enhance customer satisfaction. 

For a commercial ship, voyage optimization considering JIT and weather routing involves integrating 

various factors to optimize the voyage plan and ensure efficient, safe, and timely delivery of goods to 

their destination. 

The trade-off between weather routing and JIT is a complex and multifaceted decision that requires 

careful consideration of a variety of factors. Companies should evaluate the benefits and risks of each 

approach, as well as the specific needs and expectations of their customers and stakeholders, to make 

an informed decision that aligns with their overall business goals and values. 

Moreover, considering fuel consumption and greenhouse gas emissions, the trade-off between the just-

in-time model and weather routing lies in finding the right balance between operational efficiency and 

weather-related considerations. While the just-in-time model primarily focuses on optimizing schedules 

and reducing waiting times, weather routing prioritizes safety and minimizing fuel consumption in 

relation to weather conditions. 

Finding the optimal trade-off involves evaluating the potential fuel savings and emissions reduction from 

operational efficiency improvements achieved through the just-in-time model against the benefits of 

weather routing in terms of minimizing fuel usage and emissions by avoiding adverse weather conditions. 

It is essential to consider factors such as the frequency and severity of adverse weather, vessel 

characteristics, and the availability of accurate weather forecasts and routing advice. 

Integrating elements of both models, where feasible, can lead to synergistic benefits. For example, the 

just-in-time model can consider weather information to adjust vessel schedules and routes, accordingly, 

optimizing both operational efficiency and fuel consumption. This integrated approach allows for better 

fuel management, reduced emissions, and improved sustainability in the maritime sector. 

Overall, the trade-off between the just-in-time model and weather routing regarding fuel consumption 

and greenhouse gas emissions involves balancing operational efficiency, safety, and weather-related 

considerations to achieve the most sustainable and environmentally friendly outcomes. 
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6 Hull and robotics inspection models 

6.1 System Overview 

Inspecting the condition of a ship's hull is of utmost importance due to the potential problems associated 

with biofouling and the significance of maintaining clean cargo holds. These factors have a profound 

impact on a ship's performance, efficiency, and overall safety. To address these challenges effectively, 

advanced inspection techniques, including the utilization of robotic platforms, can play a pivotal role in 

ensuring thorough assessment and maintenance processes.  

Biofouling, the accumulation of marine organisms on the hull's surface, presents considerable risks. 

Algae, barnacles, and other organisms can increase drag and resistance, adversely affecting the 

hydrodynamics of a ship. This leads to decreased speed, heightened fuel consumption, increased 

operating expenses, and elevated carbon emissions. By meticulously inspecting the hull for biofouling, 

shipowners can promptly identify and address this issue, ensuring optimal vessel performance while 

minimizing the environmental consequences associated with the introduction of invasive species to new 

marine environments.  

Equally important is the need to maintain clean cargo holds. Lingering remnants from previous cargoes 

can contaminate subsequent loads, resulting in cargo damage and potential claims from cargo receivers. 

Certain cargoes, such as sulphur or coal, may contain corrosive elements that can pose a threat to the 

hull and steel structures if not adequately removed. Moreover, inadequately cleaned cargo holds can lead 

to wastage, off-hire disputes, and delays in the transportation process. Ensuring the cleanliness of cargo 

holds is critical to upholding the integrity of the vessel, adhering to regulations, and safeguarding the 

quality of the transported goods.  

To enhance the inspection processes, advanced techniques such as robotics can be employed to conduct 

thorough assessments of the hull's condition. These inspections utilize sophisticated sensors and 

cameras to accurately detect signs of biofouling and potential areas of concern. Integrating advanced 

inspection techniques, including robotics, into the evaluation of a ship's hull condition, addressing 

biofouling concerns, and maintaining clean cargo holds significantly enhances overall efficiency and 

safety. By embracing these technologies, shipowners can proactively preserve vessel performance, 

mitigate costly damages, and ensure compliance with environmental regulations. The implementation of 

advanced inspection methods promotes safer operations, more effective resource management, and the 

advancement of sustainable practices within the maritime industry.  

In the following paragraphs, these two concerns will be presented separately, and inspection models 

with robotic platforms will be proposed. These advanced inspection models, incorporating AI algorithms, 

sensors, and recognition techniques, will offer innovative solutions for the assessment of the ship's hull 

condition, the detection of biofouling, and the assurance of thorough cleanliness in cargo holds. By 

employing robotic platforms in these inspection processes, the efficiency, accuracy, and safety of 

evaluations can be enhanced, allowing for proactive maintenance and timely intervention to mitigate 

potential risks. 
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6.2 Biofouling: A literature Review 

The escalating menace of climate change and global warming has emerged as a major subject of 

apprehension due to the widespread discharge of pollutants into the environment owing to human 

activities. These alterations in the environment have resulted in catastrophic outcomes such as melting 

of glaciers, escalation of sea levels, exacerbation of droughts, and an amplification in occurrences of 

severe weather phenomena [35].  In response to this burgeoning crisis, the Paris Agreement has been 

ratified by 196 nations, which have jointly pledged to reduce greenhouse gas emissions to limit global 

warming below the 2°C threshold relative to pre-industrial levels, with the objective of averting any 

further deterioration of the environment [36].  

The International Maritime Organization, IMO, has, also, responded decisively to the challenge of 

escalating emissions focusing in shipping sector, which accounted for a staggering 1,076 million tons of 

air pollutants in 2018, contributing to 2.9% of global human-generated emissions. IMO is committed to 

decarbonizing international shipping and has adopted various strategies to achieve this objective. These 

include decreasing carbon emissions from new vessels through the Energy Efficiency Design Index (EEDI), 

minimizing carbon emissions in shipping by a minimum of 40% by 2030 and 70% by 2050 (compared to 

2008 levels), and enhancing the energy efficiency of existing vessels [37]. 

Multiple approaches are being explored to reduce the energy footprint of shipping, such as transitioning 

to cleaner fuels like liquefied natural gas, hydrogen, and ammonia, implementing energy-saving devices 

on ships, and optimizing ship routes to improve efficiency. The accumulation of marine organisms on the 

submerged surface of ship hulls, called biofouling, has a significant impact on a vessel's hydrodynamic 

performance [38, 39]. When a ship is submerged in seawater, a biofouling attachment begins to form on 

the structure. Before bacteria and single-celled organisms settle and aggregate into layers of a film known 

as slime, organic molecules begin to adhere as shown in the figure. 

 
Figure 22. Temporal structure of settlement [40] 

After this, the sludge secretes a number of chemicals that cause the concentration of multicellular and 

macrofouling species as a result of the amount of food available to them, and calcareous fouling develops 

[35].   

The roughness of the hull surface due to bio-fouling results in increased friction and, consequently, 

greater power requirements and fuel consumption [35,38], leading to an increase in vessel fuel 

consumption, emissions, and cleaning expenses. 
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6.2.1 Biofouling Treatment Methods 

Marine organisms adhering to a ship's hull cause major issues for both the environment and maritime 

transportation performance. Biofouling increases ship resistance, which leads to higher power 

requirements and greater fuel consumption. Research examining commercial ships has revealed that a 

thin layer of sludge, up to 50% on the hull's surface, can result in a 20 to 25% rise in fuel consumption, 

thereby increasing the emission of gaseous pollutants [41]. It is, therefore, essential to implement 

strategies for cleaning the hull and using antifouling systems to prevent organism attachment.  

An anti-fouling system refers to any coating, surface treatment, or equipment used on a ship to control 

or prevent the attachment of unwanted marine organisms. Antifouling coatings are currently the most 

popular system used by ships, but there are other options available that can be used in conjunction with 

or without the existing coating. These include ultrasound, ultraviolet radiation, marine growth prevention 

systems, and robotic biofouling clean-up systems.  

 

Biocidal antifouling systems  

Biocidal antifouling systems involve using paints that gradually release biocides from the paint film on the 

hull surface, preventing marine organisms from adhering. These paints typically contain copper biocides, 

with or without organic co-biocides or organic biocides. It's important to note that different types of 

biofoulings develop at varying rates in different environments. Therefore, the appropriate paint for 

preventing microorganism growth on a ship's hull must be chosen accordingly. For example, in 

freshwater environments, biofouling has a slower growth rate than in saltwater environments. As such, 

the paints used in freshwater contain biocides with a lower concentration and release rate.  

Using biocidal paints has several advantages, such as providing protection year-round, being easy to 

apply, and being readily available on the market. However, there are concerns about the potential effects 

on marine life due to the release of biocides and metals into the marine environment. Additionally, the 

application and removal of these paints may pose an increased hazard to human health.  

There are several types of biocidal antifouling paints available on the market, each with their own unique 

advantages and disadvantages. Soft biocidal antifouling paints are designed to slowly release biocides as 

the paint film erodes and can be used on most ships except those with high performance hulls that are 

regularly treated for optimal performance. However, the use of soft biocidal antifouling paints raises 

concerns due to the release of biocides and metals into the sea, as well as the release of microplastics. 

Hard biocidal antifouling paints, on the other hand, release biocides from an insoluble paint film that 

doesn't wear off, making them more suitable for use on ships operating at high speeds. These paints 

release fewer toxic substances compared to soft antifouling paints, but regular cleaning is still required 

to ensure their effectiveness. Lastly, hard epoxy resin with copper is highly efficient at preventing fouling, 

but its application requires precision and can be costly. Furthermore, it's not effective against copper-

resistant fouling species.  

Non biocidal anti-fouling systems  

Another type is non biocidal antifouling systems that include different approaches for prevention and 

treatment. Indicatively include:   

Biocide-free antifouling paints are hard tape films that can be applied to both the hull and propellers. 

However, their effectiveness, especially in waters with a high degree of pollution, has not been verified. 

Ultrasonic equipment includes transducers that emit ultrasonic waves of multiple frequencies, resulting 
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in a pattern of positive and negative pressure. Negative pressure creates tiny bubbles while positive 

pressure causes them to burst due to the cavitation effect. Thus, single-celled organisms are killed, and 

further growth of biofouling organisms is prevented. The advantages include the lack of use of chemical 

substances and therefore the protection of marine life, which is not a goal, the possibility of their use 

with other antifouling systems and their application in specialized areas of the ship with great efficiency. 

Ultrasonics require a large initial outlay, a suitable power source, possibly lifting the ship and larger 

vessels many ultrasonic transducers. Reactive cleaning and preventive cleaning are two methods used 

for hull maintenance while the ship is in the water. Reactive in-water cleaning involves cleaning the hull 

with equipment such as water jets or robotic cleaning systems and can only be applied with hard 

antifouling film paints. This method is fast and can be done before the ship sails to improve its hull 

performance. On the other hand, preventive in-water cleaning, also known as hull grooming, involves 

brushing the hull by a diver or autonomous robot to remove surface biofilms and prevent further 

pollution. This method can be done alongside antifouling paint films and is effective when the biofouling 

thickness is small. Regular implementation of preventive cleaning is necessary to ensure its 

effectiveness.   

Biofouling clean-up methods within water can be further categorized into manual cleaning, Powered 

rotary brush cleaning systems, and non-contact cleaning technology. Manual cleaning involves using 

brushes or scrapers to remove organisms, but it can be difficult to remove all biofouling. Song & Cui report 

that in a survey conducted to determine the degree of residual biofouling after manual cleaning, 

specifically by a diver using a hand brush, approximately 60% of the organisms were removed from the 

area. Powered cleaning systems use large rotary brushes for fast cleaning, while non-contact cleaning 

methods such as high-pressure water jet, cavitation water jet, ultrasonic cleaning, and laser cleaning are 

less damaging to the hull. Non-contact methods are especially useful for avoiding damage to welds and 

protrusions on the hull. However, there is no autonomous robotic system available that has nozzles for 

cavitation water jets [42].  

 

6.2.2 Mathematical Model for Ship Resistance Prediction due to Biofouling 

Biofouling, which affects the performance of ships and biodiversity in ecosystems, necessitates the 

development of a mathematical model for predicting the increase in resistance based on factors such as 

cleaning frequency. To this end, an in-depth literature review has been conducted to identify the variables 

required for the development of the proposed model. 

The overall resistance of the ship in calm water has been studied by many researchers. A well-known 

method is the Holtrop-Mennen method, which has been shown to be adequate due to its simplicity and 

accuracy [43, 44]. Ship resistance is composed of frictional, residual, and air drag resistance, as expressed 

hereinafter.  

 

𝑅𝑇 =  𝑅𝐹 + 𝑅𝑅 + 𝑅𝐴𝐴   

 

Residual resistance includes wave making and viscous pressure resistance, which can be combined using 

the form factor (1 + 𝑘). Increased biofouling results in higher frictional resistance. Thus, the equation can 

be written as follows [38, 45]: 
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𝑅𝑇 =  (1 +  𝛾 ∗ 𝑘)𝑅𝐹 + 𝑅𝑅 + 𝑅𝐴𝐴 + 𝛥𝑅𝐹  

𝐶𝑇 =  (1 + 𝛾 ∗ 𝑘)𝐶𝐹 + 𝐶𝑅 + 𝐶𝐴 + 𝛥𝐶𝐹  

 

The equation for calculating the total resistance coefficient (CT) includes several factors: the hull form 

factor (k) and γ is the form factor correction determined by the Holtrop-Mennen method outlined in ITTC-

57, the residuary resistance coefficient (CR), the correlation allowance (CA), and the increase in frictional 

resistance due to biofouling (ΔCF).  

According to literature review, two different methods have been studied and evaluated to determine the 

added frictional coefficient due to biofouling (ΔCF), using the resulting equivalent sand roughness height 

from the marine biofouling growth model: 

Method 1: Experiments involve converting the equivalent sand roughness height (𝑘𝑠) into roughness 

function (𝛥𝑈+) using Granville's similarity law. This method is used to calculate the added friction 

resistance coefficient due to biofouling (ΔCF). To take into account, the effect of the biofilm on the 

hydrodynamic behaviour of the ship, modified the above method. Specifically, similarity law scaling 

method of Granville and roughness functions (𝛥𝑈+) is used, which are directly related to the percentage 

of biofilm surface coverage (%SC), namely: 

𝐹𝑜𝑟 %𝑆𝐶 > 25%:                                                                       𝛥𝑈+ =  {

1

𝜅
ln(0.27767𝑘+) , 𝑓𝑜𝑟 𝑘+ ≥ 3.61

0, 𝑓𝑜𝑟 𝑘+ ≥ 3.61
 

 𝐹𝑜𝑟 10% < %𝑆𝐶 < 25%:                                      𝛥𝑈+ =  {

1

𝜅
ln(1.14492 +  0.0988𝑘+) , 𝑓𝑜𝑟 𝑘+ ≥ 4.5

0, 𝑓𝑜𝑟 𝑘+ ≥ 4.5
 

𝐹𝑜𝑟 %𝑆𝐶 < 10%:                                                      𝛥𝑈+ =  {

1

𝜅
ln(1.06492 +  0.05332𝑘+) , 𝑓𝑜𝑟 𝑘+ ≥ 4

0, 𝑓𝑜𝑟 𝑘+ ≥ 4
 

It should be noted that κ = 0.42 is von Karman constant, and 𝑘+ is the roughness Reynolds number, which 

is calculated as the quotient 
𝑘 𝑢𝜏

𝑣
 , with uτ is the friction velocity, ν = 1.1882·10−6 m2/s is the kinematic 

viscosity and k is the roughness length scale estimated by the following equation  

𝑘 =  0.055ℎ √%𝑆𝐶  

h is the average biofilm height.  

Granville’s method states that the roughness function can be obtained as follows: 

𝛥𝑈+ =  𝑈̅𝑆
+ − 𝑈̅𝑅

+ =  √
2

𝐶𝐹𝑆
− √

2

𝐶𝐹𝑅
 

The subscripts "S" and "R" refer to smooth and rough surfaces, respectively, at the same friction 

Reynolds number value (𝑅𝑒𝜏). Inner normalization is indicated by the "+" sign, which means that velocities 

are normalized by the friction velocity (Uτ), while lengths are normalized by the viscous length scale 

(m=Us). The friction Reynolds number is calculated as 𝑅𝑒𝜏 =
𝑈𝜏∗ℎ𝜏

𝑣
, where the channel half-height is used 

as a value for " hτ," and "v" is the fluid kinematic viscosity [46]. 

Method 2: The other model directly computes the added frictional resistance coefficient due to biofouling 

(ΔCF) based on the equivalent sand roughness height (𝑘𝑠), ship length (𝐿𝑊𝐿), and Reynolds number (𝑅𝑒). 

ΔCF is the roughness allowance calculated using the following expression: 
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𝛥𝐶𝐹 = 0.044 [(
𝑘𝑠

𝐿𝑊𝐿
)

1
3

− 10𝑅𝑒−
1
3] + 0.000125    

 

Where, LWL is ship waterline length, 𝑅𝑒 is Reynolds number and 𝑘𝑠 is the equivalent sand roughness 

height. The Reynolds number is calculated as 𝑅𝑒 =
𝑢∗𝐿𝑤𝑙

𝑣
, where u is the flow speed and 𝜈 is the kinematic 

viscosity.  So, the added resistance due to biofilm on the hull is determined with the following equation: 

𝛥𝑅𝐹 =  
1

2
∗ 𝜌 ∗ 𝑉𝑠

2 ∗ 𝑆 ∗ 𝛥𝐶𝐹   

 

where ρ = 1026 kg/m3 is the sea density, v is the ship speed, and S is the wetted surface area.  

It should be noted that high flow regions with higher Reynolds numbers are known to be more affected 

by added roughness. 

In addition, to account for this, the previous equation of 𝛥𝑅𝐹  can be split into different regions of the 

vessel with varying flow speeds and wetted surface areas, each having different equivalent sand 

roughness heights. This approach provides insight into the effect of different antifouling coatings on total 

ship resistance, considering the varying Reynolds numbers in different regions. 

𝛥𝑅𝐹 =
1

2
∗ 𝜌 ∗ 𝑉𝑠

2 ∗ (∑[ 𝑆𝑖 ∗ 𝛥𝐶𝐹(𝑖)]
𝑖

+ [ 𝑆𝑖+1 ∗ 𝛥𝐶𝐹(𝑖+1)]
𝑖+1

+ [ 𝑆𝑛 ∗ 𝛥𝐶𝐹(𝑛)]
𝑛

𝑛

𝑖=1

)      

𝛥𝐶𝐹(𝑚) =  0.044 [(𝑘𝑠(𝑚))
1
3 ∗ (

1

𝐿𝑊𝐿𝑚
𝐿𝑊𝐿

∗ 𝐿𝑊𝐿

1
3

) − 10 ∗ 𝑅𝑒𝑚

−
1
3] + 0.000125   

Taking the above into consideration, the first method is not preferred as it combines multiple steps and 

is limited to certain surface coverage conditions. Also, the modified version of this method, based on 

diatoms surface coverage, is not suitable as it does not accurately predict calcareous surface coverage 

fouling. Therefore, this method may underestimate the roughness and resulting resistance due to 

biofouling. On the other hand, the most optimal method (method 2), is to use a direct function to 

calculate the added frictional hull resistance due to biofouling roughness (𝛥𝐶𝐹). 

 

6.2.3 Calculation of Propeller Drag and Lift Coefficient Changes for Rough and Smooth 

Conditions 

The fouling issue is not relevant only for the hull indeed, also for the evaluation of the performance of the 

propeller. Indeed, the presence of fouling on the propeller results in a decrease in its performance. This 

phenomenon is less significant than increased hull friction, but in some cases, where possible, it is 

important to take it into account. 

In propeller analysis, it is important to account for the effects of roughness on the performance of the 

propeller. This is typically done by calculating the changes in drag and lift coefficients for rough and 

smooth conditions, which are denoted by 𝐾𝑇𝑅 and 𝐾𝑄𝑅, respectively. These coefficients are used to 
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characterize the dynamic performance of the propeller in different operating conditions. The subscripts 

"S" and "R" refer to smooth and rough surfaces, respectively. 

 

𝐾𝑇𝑅  =  𝐾𝑇𝑆 −  𝛥𝐾𝑇𝐷  − 𝛥𝐾𝑇𝐿 

𝐾𝑄𝑅  =  𝐾𝑄𝑆 −  𝛥𝐾𝑄𝐷  −  𝛥𝐾𝑄𝐿 

 

The calculation of 𝐾𝑇𝑅 and 𝐾𝑄𝑅 involves several intermediate steps. First, the changes in drag coefficient 

(Δ𝐶𝐷) between rough and smooth conditions must be computed. This is done by subtracting the drag 

coefficient in rough condition (𝐶𝐷𝑅) from the drag coefficient in smooth condition (𝐶𝐷𝑆). 

 

𝛥𝐶𝐷 =  𝐶𝐷𝑆 − 𝐶𝐷𝑅  

 

The drag coefficient in smooth condition (𝐶𝐷𝑆) is determined by the equation hereinafter, which takes 

into account the frictional resistance coefficient for smooth condition (𝐶𝐹𝑆), as well as the maximum 

thickness (𝑡) and chord length (𝑐) of the propeller blade.  

 

𝐶𝐷𝑆 =  2 (1 +
𝑡

𝑐
) ∗ 𝐶𝐹𝑆  

 

Accurate estimation of 𝐶𝐹𝑆  is essential for precise prediction of the frictional resistance of the propeller 

blade and overall propeller performance in such conditions.  

The frictional resistance coefficient (𝐶𝐹𝑆 ) for smooth conditions is given as: 

 

𝐶𝐹𝑆  =  
0.075

[log(𝑅𝑒) − 2]2
 

 

The drag coefficient in rough condition (𝐶𝐷𝑅), on the other hand, which incorporates the frictional 

resistance coefficient for rough condition (𝐶𝐹𝑅), as well as the maximum thickness (𝑡) and chord length 

(𝑐) of the propeller blade. 

𝐶𝐷𝑅  =  2 (1 +
2𝑡

𝑐
) ∗ 𝐶𝐹𝑅 

 

Once 𝛥𝐶𝐷 is determined, it is used in the following formulae to calculate the changes in drag coefficient 

(𝛥𝐾𝑇𝐷 and Δ𝐾𝑄𝐷) for rough and smooth conditions, respectively 

𝛥𝐾𝑇𝐷 =  −𝛥𝐶𝐷 ∗ 0.3 ∗
𝑃 ∗ 𝑐 ∗ 𝑍

𝐷2
   

𝛥𝐾𝑄𝐷 =  𝛥𝐶𝐷 ∗ 0.25 ∗
𝑐 ∗ 𝑍

𝐷
   

𝛥𝐾𝑇𝐷 is given by multiplying 𝛥𝐶𝐷 with coefficients based on the propeller characteristics including pitch 

(𝑃), diameter (𝐷), number of blades (𝑍), and chord length (𝑐) of the propeller blade. Similarly, 𝛥𝐾𝑄𝐷 is 

given by multiplying 𝛥𝐶𝐷 with coefficients based on the propeller characteristics. The resulting values of 

𝛥𝐾𝑇𝐷  and 𝛥𝐾𝑄𝐷 provide insights into the changes in drag coefficients for rough and smooth conditions 
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and are used in further propeller analysis to evaluate the performance of the propeller in different 

operating conditions. Properly accounting for the effects of roughness on the drag and lift coefficients is 

critical in accurately predicting the performance of propellers in real-world scenarios and can help 

optimize the design and operation of propeller systems for various applications. 

The changes in drag coefficient (𝛥𝐶𝐷) allow for the determination of changes in lift coefficient (𝛥𝐶𝐿) for 

both thrust and torque coefficients using the equations provided.  

 

𝛥𝐶𝐿 = −1.1 ∗ 𝛥𝐶𝐷 (28) 

 

𝛥𝐾𝑇𝐿 = 𝛥𝐶𝐿 ∗
𝑐 ∗ 𝑍

𝐷
∗

0.733 + 0.132 ∗ 𝐽2

√1 + 0.18 ∗ (
𝑃
𝐷

)
2

    

𝛥𝐾𝑄𝐿 = 𝛥𝐶𝐿 ∗
𝑐 ∗ 𝑍

𝐷
∗

0.117 + 0.021 ∗ 𝐽2

√1 + 0.18 ∗ (
𝑃
𝐷)

2
    

 

Where, 𝐽 is the advance coefficient, 𝐽 =  
𝜈𝛼

𝑛∗𝐷
,  𝑣𝑎 is the advance velocity, 𝑛 is the propeller speed.  

Finally, the new propeller open water efficiency for rough conditions (𝜂𝑂𝑅) can be determined. 

𝜂𝑂𝑅 =
𝐽

2𝜋
∗

𝐾𝑇𝑅 

𝐾𝑄𝑅 
  

 

6.2.4 Predictive Models for Biofouling Growth 

The correlation between environmental conditions and the growth of biofouling was explored using 

laboratory or field experiments. By analysing ample experimental data, the relationship between the 

parameters and the growth of marine biofouling (BG) on a specific surface can be accurately formulated. 

Equation 1: Growth of marine biofouling according to different parameters 

𝐵𝐺 = 𝑓1(𝑆𝑆𝑇, 𝑝𝑠𝑢, 𝑝𝐻, 𝑣, 𝐼, 𝑆, 𝑡, 𝑚𝑡 , 𝜎, 𝜃𝑐 , 𝑅𝑡 , 𝜂𝑐) 

 

These factors include seawater surface temperature (SST), salinity (psu), acidity (pH), water flow speed 

(v), light intensity (I), nutrient concentration (S), exposure time (t), micro-texture of the surface (mt), 

surface potential (σ), contact angle (θc) as a measure of wettability, roughness parameter (Rt), and the 

performance parameter (ηc) of an antifouling coating (representing the efficiency and chemical contents, 

including leaching rate). In addition, surface color and contour are believed to have various effects on 

biofouling growth, although their influence is not yet well-established. 

While numerous experimental and modeling studies have been conducted on biofouling growth, they 

often focus on a single type of biofouling or only a few parameters, resulting in the absence of a 

comprehensive model that accurately predicts biofouling growth rates under varying environmental 

conditions. Developing such a comprehensive model poses significant challenges. Considering the effects 

of multiple parameters, as indicated in Equation 1, complicates the validation process. Validating a model 

with numerous parameters necessitates extensive data collection, which is time-consuming and resource 
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intensive. In addition, outdoor experimental studies often encounter variations in environmental 

conditions even within the same day. These regularly fluctuating parameters pose challenges for short-

term prediction models. However, if the model is intended for long-term predictions, these complexities 

can be simplified. For example, the impact of seasonal changes on biofouling growth at a specific location 

can be assessed by averaging data collected over 2-3 years of field tests. 

Uzun et. al [47] proposed a series of simplifications to create a simplified biofouling growth model for 

ships. The authors presented a list of these simplifications and the subsequent development of the 

simplified equation. The explanations provided were supported by existing research in literature. 

• The surface properties of a ship, such as micro-texture (mt), surface potential (σ), contact angle (θc), 

and roughness (Rt), profoundly influence biofouling growth. These properties impact the settlement 

and attachment of organisms like hydroids, bryozoans, and ascidians. Micro-texture, with its 

grooves, pits, cracks, and crevices, provides protective habitats against strong water flow, attracting 

these organisms. Surface roughness (Rt) is crucial for bio-adhesion, as it creates crevices where 

extracellular polymeric substances (EPS) can flow, leading to strong attachment. Conversely, 

smooth surfaces only offer adhesive contact on asperity peaks, resulting in weaker bio-adhesion. 

Researchers confirm the impact of surface roughness on attachment strength. Surface potential (σ), 

representing surface charge, affects micro-organism attachment. Kerr et al. [48] demonstrate the 

influence of negative surface potential on the attachment process. Surface properties, such as mt, 

Rt, and σ, directly influence the colonization and adhesion of biofouling organisms on ship surfaces. 

Newbuilding applications typically have peak-to-trough roughness heights ranging from 30 to 150 

μm, depending on coating quality and type. For instance, SPC coatings may range from 30 to 129, 

while FR coatings fall between 7 and 85 [49, 50]. The simplification proposed here combines these 

surface properties into a simplified equation to account for their collective impact on biofouling 

growth, offering a practical and manageable modeling approach. 

• Light intensity (I) is a significant factor influencing the biofouling community, specifically plant-based 

fouling from microalgae to weeds. It is associated with water depth in existing models. 

Photosynthetic macrofouling, primarily algae, thrives in nutrient-rich areas with high light levels 

within the 0–40-meter range. However, other organisms like mussels, barnacles, and tubeworms, 

which obtain energy from sources within the sea, can grow at greater depths unaffected by light 

intensity [51]. For large merchant vessels with draft ranges of 5-20 meters, light intensity variations 

are assumed to be minimal, with locations considered to have similar light intensity and spectrum. 

• The availability of nutrients (S) and the velocity (v) of water flow significantly influence marine 

fouling. Nutrient abundance is closely tied to water flow rates and proximity to coastal areas, which 

tend to have higher nutrient levels due to human-related discharges. As ships approach shorelines, 

biofouling growth intensifies. When modeling biofouling growth during port stays, a stable water 

velocity is assumed, and the concentration of nutrients is considered uniform across all ports. 

• Although the overall impact of pH on biofouling growth remains insufficiently studied, research 

suggests that pH levels ranging from 6.5 to 10 are conducive to a broad spectrum of biofouling 

organisms. Global seawater pH values typically fall between 7.74 and 8.4. Given the relatively limited 

variations in pH across the world's seas, the effects of pH on biofouling growth were simplified in 

the model. 

• Salinity (psu) plays a decisive role in the growth of biofouling organisms, with different types of 

fouling organisms exhibiting diverse responses to changes in salinity. Despite its importance, no 

mathematical model specifically addresses the effect of salinity on biofouling growth rates. Existing 

studies on salinity primarily focus on examining the salinity tolerances of biofouling organisms rather 

than modeling the precise influence of salinity on growth rates. Additionally, the salinity values of 
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world seas typically range from 30 to 36 psu, which falls within the salinity tolerance range of 

biofouling organisms. 

 

Based on these simplifications, the researchers focused on two key factors that have the greatest impact 

on biofouling growth: the performance of the antifouling coating and the exposure time to seawater. 

Their goal was to create a simplified model for predicting ship biofouling during idle periods, focusing on 

exposure time and antifouling coating performance. The simplified model expresses the biofouling 

growth (BG) as a function of the exposure time (t) and the antifouling coating performance parameter 

(ηc).  

 

Equation 2: Growth of marine biofouling after simplifications 

𝐵𝐺 = 𝑓2( 𝑡, 𝜂𝑐) 

 

The antifouling coating performance parameter is determined by a function (g) that considers the change 

in sea surface temperature (ΔSST), as shown in Equation 3. 

 

Equation 3: Antifouling coating performance in relation to changes in sea surface. 

𝜂𝑐 = 𝑓3( 𝛥𝑆𝑆𝑇) 

 

It is important to note that the performance of antifouling coatings can vary depending on the 

geographical region, mainly due to the significant influence of temperature on biofouling growth. 

Therefore, the model incorporates the change in sea surface temperature (ΔSST) as a parameter to 

predict the effects on the antifouling coating performance. Also, the model focused on the variations in 

sea surface temperature (SST) primarily based on latitude, while neglecting the relatively minor effects 

of changes in longitude. The authors recognized that the impact of longitude on SST is relatively small in 

comparison to the significant variations observed with latitude. Therefore, the model emphasized the 

more influential relationship between SST and latitude in predicting biofouling growth (Equation 4) 

 

Equation 4: SST and latitude in predicting biofouling growth.  

𝑆𝑆𝑇𝑎 = 12.5 + 15 (cos (
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒

28.64
))  

And  

 

Equation 5: Linear extrapolation or interpolation process for antifouling coating performance parameters 

𝜂𝑐𝑎 =  
𝜂𝑐𝑦(𝑆𝑆𝑇𝑎 − 𝑆𝑆𝑇𝑥) + 𝜂𝑐𝑥(𝑆𝑆𝑇𝑦 − 𝑆𝑆𝑇𝑎)

𝑆𝑆𝑇𝑦 − 𝑆𝑆𝑇𝑥
  

 

The coating performance parameter at an arbitrary location is denoted as ηca, while ηcy and ηcx represent 

the coating performance parameters at field test locations y and x, respectively. SSTa represents the sea 

surface temperature at the arbitrary location, while SSTy and SSTx indicate the sea surface temperatures 
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at locations y and x. It's important to consider that the model takes into account the variations in coating 

performance and sea surface temperatures across different locations during the field tests. 

 

6.3 Challenges for Inner Hull Inspections and Cleaning 

Another challenge is to solve the main problems faced on the cargo hold cleaning procedure – as applied 

on merchant bulk carrier vessels. Cargo cleaning is very important especially for bulk carriers. In 2022, the 

combined capacity of bulk carriers amounted to about 44% of the total capacity of the global merchant 

fleet.2 Cargoes transported via maritime routes exhibit significant variations from port to port, 

necessitating thorough cargo hold cleaning following unloading and prior to loading. The process of 

cargo hold cleaning plays a pivotal role in ensuring the purity and quality of transferred goods, particularly 

when food-grade specifications are involved. Moreover, it serves to safeguard the vessel itself from 

corrosive or aggressive cargo. Neglecting to remove loose scale and remnants from prior cargoes can 

have detrimental effects. It can lead to concealed cargo hold wastages and continuous exposure of steel 

structures to corrosive traces of cargoes like sulfur, which can be found directly or in other cargoes such 

as coal and certain fertilizers3. Given that the risks associated with cargo contamination are directly 

proportional to the cargo's value, typically ranging in the tens of millions of euros per cargo, the industry 

is diligent in closely monitoring this matter through accredited surveyors. Inadequate cleaning 

procedures can result in delays, port charges, charterer claims, and potential off-hire situations, all of 

which significantly impact the vessel’s overall asset value [52]. However, current methods for cargo hold 

cleaning by specialized personnel carries significant health, safety, and environmental risks, in addition to 

being a costly and time-consuming process. 

The current process involves manually jetting the hold surfaces with water or chemical additives and 

water – depending on the surface contamination [53]. Jetting is carried out by man-entry into the holds, 

always classed as closed-space entry, possibly a hazardous area due to toxic gases or lack of oxygen. 

Human operatives then utilize a single water nozzle – possibly with the use of chemicals / detergents – 

attempting to hose down the cargo hold surface – jetting from the tank-top deck. Holds are quite large; 

thus, hosing down a wall of steel, with apertures, at a distance of several meters can only achieve very 

average results, while being time-consuming and cumbersome. Not only time and effort are wasted, but 

also chemicals and water, which then need to be safely disposed of. Thus, the inefficiency of the process, 

combined by the sheer size and volumes involved, and the risks and costs of failure truly require an 

improvement. 

Failure to properly clean cargo holds prior to loading can result in a range of negative consequences. 

Delays, off-hire, and disputes in charter parties can arise, causing costly interruptions in the transportation 

process. Furthermore, the presence of remnants from previous cargoes can lead to cargo contamination 

and infestation, resulting in expensive damage claims from cargo receivers. These challenges highlight 

the utmost importance of implementing effective and efficient cleaning procedures to ensure the safe 

and successful transportation of bulk cargoes. Taking proactive measures in cleaning not only mitigates 

risks but also helps maintain the integrity of cargo, protecting both the shipping company's reputation 

and financial interests. 

 

 
2 https://www.statista.com/statistics/264023/capacity-of-the-global-merchant-fleet-by-ship-type/ 
3 https://bulkcarrierguide.com/carriage-of-sulphur.html 
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6.4 Underwater Inspection Model 

The proposed underwater robotic inspection model aimed at developing and demonstrating a rapid, 

automated system dedicated to assessing hull biofouling. The objective of this cutting-edge system is to 

utilize underwater robotics equipped with advanced image analysis and AI algorithms, allowing for the 

evaluation of sea growth on the ship's hull. Notably, machine learning techniques will be employed to 

assess the levels of biofouling by analyzing previous data and using it to inform the evaluation process. 

The primary aim of this innovative system is twofold: first, to establish a more efficient and optimized 

schedule for hull cleaning, and second, to enhance the performance of hull coatings. To achieve these 

goals, the robotic platform will be deployed to conduct inspections and monitor the extent of sea growth 

on the hull's surface. Using sophisticated mapping and pattern recognition techniques, the robot will 

follow pre-defined paths, systematically identifying and evaluating all affected areas.  

To further enhance the capabilities of the inspection system, additional advanced sensors and equipment 

will be incorporated. Integrating a range of advanced sensors such as accelerometers, gyroscopes, 

LVDTs, pressure sensors, LIDAR, and cameras, this state-of-the-art inspection system also leverages 

machine learning techniques to enhance its capabilities. Accelerometers and gyroscopes provide valuable 

information on motion and orientation, while LVDTs and pressure sensors assess the structural integrity 

of the hull. The inclusion of LIDAR allows for the generation of three-dimensional models, facilitating 

accurate mapping and identification of biofouling areas. Additionally, cameras with high-resolution 

imaging capabilities capture visual data that aids in the assessment and documentation of the hull's 

condition.  

The system will encompass a comprehensive reporting capability, providing detailed and accurate data 

on the hull's condition. By utilizing machine learning algorithms, the system will analyze previous 

paradigms of biofouling to aid in the assessment process. This integration of machine learning with real-

time image analysis will enable the system to make informed decisions about the extent of biofouling and 

determine the appropriate course of action. 

This approach has the potential to revolutionize the monitoring and maintenance practices of marine 

vessels. By effectively measuring and tracking biofouling levels, this automated inspection system 

promises to optimize maintenance operations, improve the efficiency of cleaning processes, and 

significantly enhance the overall performance and longevity of the vessel's hull. The incorporation of 

advanced machine learning techniques, together with the integration of additional sensors and 

equipment, highlights the progressive nature of this technological advancement, emphasizing the value 

of a comprehensive and data-driven approach to hull assessment and maintenance. 

6.5 Inner Inspection with Cable Robots 

To address the above shortcomings, a novel, autonomous cable robot for cleaning and inspection could 

be designed, aiming to settle the issues of quality of operation, safety, and environmental protection.  

Cable robots form a new generation of robots based on a novel architecture called cable-driven parallel 

robots (CDPR), where a set of cables whose lengths can be modified by the use of winches, connect the 

mobile platform to fixed points. A typical cable robot system consists of a fixed base and a movable 

platform connected by multiple cables. The cables are attached to both the base and the platform, 

forming a network of interconnected wires. By adjusting the cable lengths and tensions, the robot can 

achieve various poses and orientations, enabling it to reach confined spaces and navigate complex 

environments in conjunction with a digital twin of the workspace. In short, cable robots offer innovative, 
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modular, and large-scale manipulation systems for industrial applications as well as in situations where 

human intervention is infeasible or undesirable [54].  

They are unique in their dexterity and flexibility, their adaptive nature and speed of installation, as well as 

their low cost. Moreover, they have been very well studied including kinematics, control, and calibration 

[55], therefore they are today technologically ready for industrial-strength applications and commercial 

use. It is possible to use the revolutionary modularity of cable robots to solve complex and heavy-duty 

tasks, which are too dangerous and costly for human agents in the merchant marine. 

The use of cable robots can lead to a system that is simple, transportable, easy to maintain and able to be 

packed in a standard sea-worthy container. When deployed, it can be suspended from 4 winches 

mounted on the hatch cover guide rails, possibly with another 4 at the hold’s bottom. Motion planning 

may rely on 3D scanning by a camera [56]  (and possibly floodlight) or on using a digital twin of the hold’s. 

On the platform, a jetting nozzle with 2 Degrees of Freedom (DoFs) undertakes cleaning at relative 

proximity, while a camera undertakes inspection. An important feature of this solution is the proximity of 

the jetting nozzle to the surface. 

The user will need to enter the hold geometry, selecting from pre-defined shapes/volumes – using 

purpose-built software. The unit could then self-calibrate for position in Euclidean 3d space (xyz 

coordinates). The cleaning of each surface would be automated and adapted to the plane of the steel 

surface to be cleaned. Auto-mode should allow unmanned washing of the hold, including control of all 

DoFs, on/off nozzle operation & safety interlocks, “fast-clean” and “detailed-clean” algorithms. Manual 

override would allow the operator to take process in full manual mode, reverting to auto-mode in a simple 

fashion. On the platform, equipment is required so as to undertake (i) cleaning using jetting nozzle, and 

(ii) inspecting the hold walls by camera, and possibly floodlight. For (i), the platform holds a rotating 

mechanism to allow 360-yaw, and 360-pitch. Single or multiple nozzle configurations can be used. 

 

Overall, the advantages of the cable robot in such an application are listed below: 

• Ability to vary the angle of attack of the nozzle (yaw and pitch) to maintain best angle for steel plates 

of various angles. 

• Safety enhancement – as human operatives will not work in the cargo holds. 

• Green shipping – as improved efficiency will require much less water, and much less chemical 

volume. 

• Automation of the process, by mapping the cargo hold volume either by 3D scanning or by 

employing a digital twin of the cargo hold’s. 

• Simplicity- The equipment needed is very simple and easy to maintain. 

• Allows both important tasks of cleaning and inspection to be carried out at the same time.  

• Allows for possible extensions: to tanker vessels – for tank cleaning operations, for spot repairs, and 

for probe / thickness measurement. 

6.6 Vessel Structure and Condition Assessment: Model’s Framework 

Marine biofouling on the hull and cargo holds cleanliness are major concerns, that pose a variety of risks. 

Some of them are related to the financial burden on the shipping companies, due to the reduced 

performance of the ships, and the environmental damage mainly due to the increased emissions of 

gaseous pollutants, as well as the transfer of Invasive organism to other ecosystems. And others are 

about delays, port charges, charterer claims, and potential off-hire situations, all of which significantly 
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impact the vessel’s overall asset value. Assessment of the inner and outer hull condition can be supported 

by the rapid technological development of time, with the use of fast and automated inspection systems. 

These advanced systems will enable precise evaluations of biofouling on the ship's hull, and they can 

contribute to ensuring the cleanliness of cargo holds, effectively addressing the challenges associated 

with cargo transportation. Therefore, the contribution of this new technological system lies in improving 

the efficiency of maritime operations and in reducing the environmental and economic impact of 

maritime industry.  

Underwater robotics outfitted with image analysis, sensors, machine learning and artificial intelligence 

(AI) algorithms can be used to accomplish this as a solution to biofouling issue. These robots would be 

developed specially to assess sea growth and evaluate the degree of biofouling on a ship's hull. The robot 

would be able to navigate along a pre-defined path and identify areas of the hull that are impacted by 

biofouling by utilizing cutting-edge mapping and pattern recognition techniques. The use of underwater 

robotics for hull biofouling assessment offers several advantages over traditional inspection methods. 

Firstly, it is much faster and more efficient than manual inspection methods, allowing for a more frequent 

assessment of hull condition. Additionally, it is also more accurate, as the robots can identify areas of 

biofouling that may be missed by human inspectors. Accurately assessing the level of biofouling on a 

ship's hull is a crucial step in optimizing the maintenance schedule and ensuring that the vessel operates 

efficiently. The results of these assessments can inform the cleaning schedule and contribute to improved 

coating performance, which ultimately reduces fuel consumption and emissions. The inspection system 

mentioned above would include a reporting capability, providing accurate and thorough information on 

the condition of the hull, in order to accomplish this goal. Real-time monitoring of biofouling levels and 

the ability to make maintenance decisions informed by this reporting capability would help to lower costs 

and lengthen the useful lives of marine vessels. This creative inspection system promises to revolutionize 

the way marine vessels are monitored and kept in good health by measuring and tracking biofouling 

levels. For maintaining effective and environmentally friendly marine transportation, it offers an objective 

and precise assessment of the hull's condition. The environmental impact of marine transportation could 

be significantly reduced with the help of this innovative method for assessing biofouling, which also 

promises to increase safety and cut costs. In addition to the benefits for marine transportation, this new 

system could also have broader implications for the marine ecosystem. By reducing the spread of invasive 

species through biofouling, this technology has the potential to improve the health of the marine 

environment and protect biodiversity. In this way, the use of underwater robotics equipped with image 

analysis and AI algorithms has the potential to make a significant contribution to environmental 

sustainability.  Another advantage of using robotics for biofouling assessment is that it reduces the need 

for divers to perform dangerous and time-consuming underwater inspections. This not only reduces the 

risk of injury or death to divers but also saves time and resources by eliminating the need for specialized 

equipment and personnel.  

On the other hand, the effective assessment and cleanliness of cargo holds have emerged as significant 

challenges in the maritime industry, particularly for merchant bulk carrier vessels. To address these issues, 

a new solution is being explored: the utilization of autonomous cable robots for inspection and cleaning 

tasks. This innovative approach aims to enhance the quality of operations, prioritize safety, and protect 

the environment. Autonomous cable robots represent a new generation of robotic systems, 

characterized by their unique architecture known as cable-driven parallel robots (CDPR). These robots 

consist of a fixed base and a movable platform interconnected by multiple cables. By adjusting the 

lengths and tensions of these cables, the robots can achieve versatile poses and orientations, enabling 
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them to navigate complex spaces and reach confined areas within cargo holds. In the context of cargo 

hold inspections and cleaning, autonomous cable robots offer numerous advantages. Their flexibility and 

dexterity empower them to tackle challenging environments and access areas that may be difficult for 

human operators to reach. With the support of digital twin technology, these robots can efficiently 

maneuver and perform tasks with exceptional precision. One of the key benefits of autonomous cable 

robots is their modularity and scalability, making them well-suited for heavy-duty tasks in the merchant 

marine industry. Their adaptive nature and rapid installation process contribute to cost-effective 

operations. Moreover, extensive research and development efforts have focused on cable robot 

kinematics, control, and calibration, ensuring their readiness for industrial-strength applications and 

commercial use. By incorporating autonomous cable robots into cargo hold cleaning procedures, 

significant improvements can be achieved in terms of operational quality, safety, and environmental 

protection. These robots eliminate the need for manual jetting and human entry into the cargo holds, 

thereby mitigating the risks associated with toxic gases, oxygen deprivation, and confined spaces. 

Instead, the robots utilize their cable-driven mechanisms to efficiently clean the surfaces of cargo holds, 

delivering consistent and thorough results. This approach not only saves time and effort but also 

optimizes the use of chemicals and water, reducing waste and facilitating proper disposal practices. 

Ensuring the cleanliness of cargo holds prior to loading is paramount for preventing delays, disputes, and 

cargo contamination. By implementing autonomous cable robots for inspection and cleaning purposes, 

cargo hold operations can be conducted with heightened efficiency and effectiveness. This 

transformative approach enhances the overall safety and success of transporting bulk cargoes, 

safeguarding the reputation and financial interests of shipping companies. 

 The picture shows the entire architecture of the system. 

 

 

 
Figure 23. Hull inspection and condition assessment model 
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7 Integrated Machinery Performance Management and Remote 

Control 

Predictive maintenance is a proactive approach to maintenance that uses data analysis and machine 

learning algorithms to predict when maintenance should be performed on a machine or equipment, in 

order to prevent unexpected downtime and reduce maintenance costs. 

The idea behind predictive maintenance is that by analyzing data from sensors and other sources, such 

as historical maintenance records, an algorithm can identify patterns and anomalies that are indicative of 

potential equipment failures. Based on these predictions, maintenance teams can plan and schedule 

maintenance activities before equipment failure occurs, reducing downtime and increasing equipment 

reliability. 

Predictive maintenance typically involves the use of sensors, machine learning algorithms, and data 

analytics tools to collect and analyze data on equipment performance, such as temperature, vibration, 

and other operational parameters. This data is used to build a model that can predict when maintenance 

is needed, based on the current state of the equipment. 

By using predictive maintenance techniques, organizations can avoid unscheduled downtime, improve 

safety, and reduce maintenance costs. This approach can also help organizations optimize maintenance 

schedules and minimize the need for emergency repairs, ultimately improving the overall performance 

and reliability of their equipment. 

In the marine sector, predictive maintenance is used to improve the performance and reliability of ships, 

offshore platforms, and other marine equipment. Marine equipment is subjected to harsh environments 

and operating conditions, which can result in unexpected failures, downtime, and costly repairs. 

Predictive maintenance in the marine sector involves the use of sensors and data analytics tools to 

monitor the performance of critical equipment, such as engines, turbines, and propellers. By analyzing 

data on factors such as temperature, vibration, and oil quality, machine learning algorithms can predict 

when maintenance is required and recommend the appropriate action to be taken. 

For example, a ship's engine may be monitored using sensors that collect data on oil quality, temperature, 

and other operational parameters. This data is then fed into a machine learning algorithm that analyzes 

the data and generates a maintenance plan that includes tasks such as oil changes and component 

replacements. 

By using predictive maintenance techniques in the marine sector, organizations can reduce downtime 

and maintenance costs, while also improving the safety and reliability of their equipment. This can be 

especially important in the case of offshore platforms, where equipment failures can pose a significant 

risk to human life and the environment. 

The approach to implementing predictive maintenance in the marine sector typically involves the 

following steps: 

• Identify critical equipment: The first step is to identify the equipment that is critical to the operation 

of the vessel or offshore platform. This includes equipment such as engines, turbines, and propellers, 

as well as equipment that is essential to the safety of the crew and the environment, such as fire 

suppression systems. 

• Install sensors: Once critical equipment has been identified, sensors can be installed to monitor the 

performance of the equipment. These sensors may include vibration sensors, temperature sensors, 
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and oil quality sensors. 

• Collect data: The sensors will generate data on the performance of the equipment. This data can be 

collected and analyzed to identify patterns and anomalies that may be indicative of potential 

failures. 

• Analyze data: The data can be analyzed using machine learning algorithms to identify patterns and 

anomalies. These algorithms can be trained using historical data to improve their accuracy in 

predicting potential failures. 

• Predict maintenance needs: Based on the data analysis, the algorithms can generate predictions 

about when maintenance will be required. This information can be used to schedule maintenance 

activities and minimize downtime. 

• Take action: Finally, maintenance teams can use the predicted maintenance needs to take action, 

such as performing preventive maintenance, ordering replacement parts, or scheduling repairs. 

 

The approach used is based on baseline maintenance that involves comparing the current performance 

of a piece of equipment to a known baseline performance. The baseline is established by measuring the 

performance of the equipment when it is in good condition and using this as a reference point for future 

performance analysis. 

The goal of maintenance analysis based on baseline is to identify changes in equipment performance that 

may be indicative of potential failures or maintenance needs. By monitoring the performance of 

equipment over time and comparing it to the baseline, maintenance teams can identify deviations from 

normal performance and take action before equipment failure occurs. 

Maintenance analysis based on baseline involves the following steps: 

• Establish a baseline: The first step is to establish a baseline performance for the equipment. This may 

involve conducting tests or measurements when the equipment is new or in good condition and 

using this data to establish a reference point for future analysis. 

• Monitor performance: Once a baseline has been established, the performance of the equipment can 

be monitored over time. This may involve measuring factors such as temperature, pressure, 

vibration, or other operational parameters. 

• Compare to baseline: The performance data is then compared to the baseline to identify any 

deviations from normal performance. This may involve statistical analysis or visual inspections of 

charts or graphs. 

• Identify potential issues: Deviations from normal performance may be indicative of potential issues 

or maintenance needs. Maintenance teams can use this information to identify potential issues and 

take action, such as scheduling preventive maintenance or repairs. 

 

Detecting anomaly signals is an essential part of any maintenance predictive system. An anomaly signal 

is an indication that the performance of a piece of equipment is deviating from its expected or normal 

behavior.  

It is important to note that anomaly detection is not a one-time activity, but rather an ongoing process. 

Maintenance predictive systems should be continually monitored and adjusted based on new data and 

changing conditions to ensure that anomaly signals are detected in a timely and effective manner.  
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7.1 System Overview 

The data monitored by the system are raw and from other systems that usually record at very high 

frequencies. Such data are subject to large local fluctuations that are not representative of the signal 

itself, as they result from changes in machine regimes. In order to make the data from the sensors useful 

and usable for diagnostic purposes, they are analysed and characterized statistically. The extrapolated 

statistical parameters with which the software will work are as follows: 

• Mean Value; 

• Standard Deviation; 

• Skewness (coefficient of skewed distribution); 

• Kurtosis (coefficient of statistical repeatability); 

• Crest Factor (waveform coefficient); 

•  

The generation of these statistical parameters must be based on a sufficiently large sample (about 300 

measurements). Considering that the system can receive data at a frequency of 1Hz, it is necessary to 

perform the calculation of the above parameters at set time intervals of not less than 5 minutes in order 

to comply with the sampling of 300 measurements.  

The first two parameters (mean value and standard deviation) are used to assess the diagnostic 

performance of the component, i.e., to evaluate its performance relative to normal operation in order to 

produce the baseline that establishes its standard operation. The other three parameters, on the other 

hand, are useful for assessing the "stationarity" of the analysed data, i.e., whether it is sufficiently variable 

to be considered a real data, but not exaggeratedly variable to make it unusable. Generally, signals that 

are too steady are the result of sensor or acquisition panel malfunctions, while signals that are too 

variable are related to simple changes in machine speed. 

Descriptive signals of the same object are grouped into "Diagnostic groups". Diagnostic groups referring 

to the physical structure of the same machinery are grouped under the same "Equipment." In turn, the 

equipment that go to make up the same piece of equipment are grouped into "Main Components."  

An example of the component hierarchy will be as follows: 

 

Diesel Generators -> DG1 (comp. princ.) -> DG1Motor (equip.) -> Cooling (diagn. group) -> 

Temperature_Water_Motor_Input_Exchanger_B (signal). 

 

A "Primary parameter" (primary control parameter) is selected for each equipment, representative of the 

behaviour of all data contained in the group. In the example given, the primary parameter for the 

equipment "DG1Motor" is the "percent electrical load" (a quantity between 0 and 100). Although the 

analysis theories are totally identical for each component, it is possible to intuitively distinguish 

equipment into two broad categories: 

1. Continuous equipment, whose primary variable can take any value within the established range (e.g., 

percent electrical load); 

2. Boolean equipment, whose primary variable can take on only discrete values (e.g., running status 

i.e., on and off or on, half power and full power). 

 The proper generation of these baselines is crucial. In fact, CBM systems base all their diagnostic analysis 

on the standard running condition. In fact, if the baselines are not properly processed or if they do not 
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represent the correct operation of the device, the system will not be able to perform a reliable evaluation 

of the component. 

7.2 Statistics Background 

A continuous variable is a type of variable that can take on an infinite number of values in a given interval. 

All signals that are part of the data sets of the frigate's sensor systems can be treated as variables of a 

continuous type, to which all the theoretical tools presented later in this appendix are applicable.  

In probability theory, a probability density function, or probability density function (PDF), is a function 

whose value at a given point (sample) in the sample space, that is, in the set of possible values taken by 

the random variable, can be interpreted as the relative probability that the value of the random variable 

is equal to that sample. The normal distribution is a particular continuous probability distribution. 

The normal has a bell shape, is also called Gaussian, and is symmetrical with respect to its mean, denoted 

by η. It extends indefinitely in either direction along the x-axis, but most of the area subtended by the 

curve gathers around the mean. The curve has two points, called inflection points, which coincide with a 

distance of one standard deviation more or less from the mean and at which the curve itself changes 

convexity. The reference quantities for characterizing a particular Gaussian are: 

• η i.e. the mean, coincident with fashion and median; 

• σ i.e., the standard deviation; 

• Skewness (equal to 0 in the case of Gaussian); 

• Kurtosis (equal to 3 in the case of Gaussian). 

 

The main characteristics of the Gaussian can be summarized as follows: 

• It is symmetric with respect to η; 

• The value x = µ defines the fashion, mean and median; 

• It is increasing for x < η and decreasing for x > η; 

• It is asymptotic to the x-axis on both sides; 

• It possesses two inflection points for x = η ± σ; 

• Skewness value equal to 0 and Kurtosis value equal to 3; 

• Assumes maximum value equal to 1/(σ√2π) at x = η.  

 

 

 

Figure 24. Gaussian Distribution 
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7.2.1 Mean 

Denoted by the symbol η, the mean value, or simply mean, is also referred to as the centre of the 

distribution. Its value characterizes the position of the Gaussian curve along the x-axis. Its value is 

expressed by the following formula: 

𝜂 =  ∫ 𝑥𝑓𝑥(𝑥)𝑑𝑥 ≅  ∑ 𝑥𝑖𝑓𝑋(𝑥𝑖)∆𝑥

𝑁𝑏𝑖𝑛

𝑖=1

+∞

−∞

 

As η changes, the curve shifts along the x-axis, but its shape remains unchanged. A value of η_1<η results 

in a shift to the left while, conversely, in the case of η_1>η, the curve is shifted to the right. 

7.2.2 Standard Deviation 

The mean, as a positional index, while very important for summarizing a statistical distribution, provides 

only a partial view of the distribution of the variable being analysed. It is useful to evaluate an index of 

variability, or dispersion index, such as variance or standard deviation to better characterize the signal 

under investigation. 

The standard deviation of a variable corresponds to the second order of the expected value (m2), or the 

second power of the differences of the values of each observation from the mean of the variable. In fact, 

the deviation (or deviation, or deviation) from the mean can be defined for each observation; this is 0 if 

the observation has exactly the same value as the mean. On the other hand, the deviation will be negative 

if the observation has a value less than the mean. Conversely, the deviation will be positive if the 

observation has a value greater than the mean. 

We mentioned that the squares of the deviations are used to calculate the standard deviation. This gives 

a positive number, whether the deviation is higher or lower, and negative deviations can be added to 

positive ones without the opposite signs affecting the result, making it zero. The sum of all deviations of 

the mean squared is called the deviance, while the mean of the squared deviations is called the variance.  

As constructed, variance (𝜎𝑥
2) is expressed as the square of the unit used for the variable. Its formula is as 

follows: 

𝑚2 = 𝜎𝑥
2 =  

∑ (𝑥𝑖 − 𝜂)2𝑁
𝑖=1

𝑁 − 1
 

 

With: η mean of values, 𝑥𝑖 value of the i-th observation, N number of observations available.  

Note that in this type of representation we have used the value N-1 in the denominator instead of just N 

in order to correct for the value of the variance, which will tend to be underestimated if calculated on a 

small sample compared to the entire population of values that can be assumed by the variable under 

consideration. 

The unit of variance is the square of the unit of the measured quantity. Consequently, it is often preferred 

to use the square root of variance, which has the same unit of measurement as the variable and the mean. 

The square root with positive sign of the variance is called the standard deviation or mean square 

deviation: 

𝜎𝑥 = √
∑ (𝑥𝑖 − 𝜂)2𝑁

𝑖=1

𝑁 − 1
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As the variability among observations increases, the deviations from the mean increase, the greater the 

sum of squares and, therefore, the greater the value of the variance and, consequently, the mean square 

deviation as well. 

The standard deviation is 0 only when there is no dispersion. This situation occurs when all observations 

considered coincide with the same value. In all other cases, the further the values deviate from the mean, 

the larger the standard deviation will be. 

7.2.3 Skewness (Static Momentum of the 3rd Order) 

The third-order moment is related to the concept of symmetry/asymmetry, or ‘’Skewness”, of the 

distribution. A distribution of data is said to be symmetrical if there is a value that divides the distribution 

itself into two parts, with the elements of each part symmetrical with respect to the corresponding 

elements of the other part. This is, for example, the case of the Gaussian. The formula for Skewness is as 

follows. 

𝑚3 =  
∑ (𝑥𝑖 − 𝜂)3𝑁

𝑖=1

𝑁
 

 

Using the third power of the differences between expected value and observations here, it is often 

preferred to normalize this factor by the variance in order to have an index that is easier to understand: 

 

𝛾3 =
𝑚3

𝜎𝑥
3

 

 

The skewness index provides an indication of how much the distribution under consideration 

concentrates around its mean or disperses to the left or right of it. Specifically, when the skewness index 

is < 0, the phenomenon tends to form a hump to the right of the mean, consequently forming an 

elongated tail to the left; conversely, when it is > 0, the tail tends to elongate to the right, forming a hump 

to the left of the mean. 

7.2.4 Kurtosis 

Going up another order, we can still find information about the convexity of the probabilistic distribution 

of a population. The statistical moment of the 4th order has the following formula: 

 

𝑚4 =  
∑ (𝑥𝑖 − 𝜂)4𝑁

𝑖=1

𝑁
 

 

Again, having a fourth power, the kurtosis index is often normalized always through the second-order 

moment: 

𝛾4 =  
𝑚4

𝑚2
2 
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The Kurtosis index, from the Greek "kurtosis" or "convex," measures the greater or lesser pointedness 

of a distribution of data, relative to the normal distribution. Accordingly, it indicates the greater or lesser 

weight of values at the extremes of the distribution, compared to those in the middle.  

A curve that is sharper than that of the normal distribution is called leptokurtic and corresponds to a 

kurtosis index 𝛾4>3. A form of distribution that is less sharp than that of the normal distribution is called 

platykurtic. In this case, the value of Kurtosis is 𝛾4<3. 

7.2.5 Crest Factor 

Finally, the crest factor is an indicative measure of the presence and sharpness of peaks in a wave 

function. In the context of a distribution of signals, it indicates the presence of peaks in the distribution 

and how pronounced they are, so it can be a useful indicator of the width of the distribution of values. A 

value of 1 indicates the absence of peaks, while a higher value is indicative of the presence of peaks in the 

signal, as in the case of a sinusoidal function. 

The crest factor is calculated as the peak amplitude value (𝑥𝑝𝑒𝑎𝑘) divided by the mean square (𝑥𝑟𝑚𝑠): 

𝐶𝐹 =  
|𝑥𝑝𝑒𝑎𝑘|

𝑥𝑟𝑚𝑠
 

𝑥𝑟𝑚𝑠 =  √
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

 

 
Figure 25. Examples of CF. 

7.2.6 Stability Condition Values 

In general, the points considered stationary and used to calculate the reference condition (baseline) for 

the signal of interest must meet the following characteristics: 

• Crest Factor ≥ o.16; 

• Skewness ≤ 0.3; 

• Kurtosis (for continue signal) 1 ≤ |𝛾4| ≤ 3.5 

• Kurtosis (for discrete signal) 0 ≤ |𝛾4| ≤ 3.5 
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7.2.7 Pearson Index 

In statistics, a correlation is a relationship between two variables such that each value of the former 

corresponds to a value of the latter, according to a certain regularity. The type of relationship between 

two quantities can be evaluated either qualitatively, using graphs, or quantitatively, by taking advantage 

of one or more usable indices. By arranging the two quantities under consideration on a scatter plot (also 

called a scatter plot), it is possible to assess whether a correlation between them can be detected and, if 

so, what kind. To express quantitatively the strength of the link between two variables, as already stated, 

indices called correlation indices are used. The choice of an index in particular generally depends on 

various factors, and in particular the nature of the distribution of the variables under consideration 

(continuous or discrete) and the characteristics of the distribution of the points in the scatter plot (linear 

or nonlinear). In this type of application, the most commonly used index is the Pearson correlation index 

(or coefficient). Given two statistical variables (or quantities) X and Y, the Pearson correlation index is 

defined as: 

𝜌𝑋𝑌 =  
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
 

Where 𝜌𝑋𝑌 represents the covariance between variables X and Y, 𝜎𝑋 and 𝜎𝑌 represent the standard 

deviation of X and Y respectively. 

Pearson's coefficient takes values between -1 and +1. 

Specifically: 

 𝜌𝑋𝑌 > 0 X and Y are said to be directly correlated or positively correlated -> positive correlation; 

 𝜌𝑋𝑌 = 0 X and Y are said to be uncorrelated, that is, independent variables; 

 𝜌𝑋𝑌 > 0 X and Y are said to be inversely correlated or negatively correlated -> negative 

correlation. 

In more detail, narrowing down to the case of positive correlation: 

 0 < |𝜌𝑋𝑌| < 0.3  weak correlation; 

 0 < |𝜌𝑋𝑌| < 0.7 moderate correlation; 

 |𝜌𝑋𝑌| > 0.7 strong correlation. 
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Figure 26. Example of correlation matrix composed by Pearson's coeff. 

 

7.3 Baselines 

The processed stationary points were sorted by each bin. The bin is a slice of x values. 

For each bin there is a group of points where the mean along x and y and the standard deviation were 

evaluated. The values for each bin are stored in a table. The table represents the standard behaviour of a 

single device. According to this approach, there will be a table describing the standard behaviour of a 

given device quantity, temperature, pressure, or vibration. In this way, it is possible to determine whether 

a signal is representative of abnormal behaviour or aligned with normal operation. 

In general, if an operating point classified as stationary falls within the standard deviation, the point is to 

be considered non-alarming. Conversely, if an operating point falls outside the baseline limit, either as a 

positive or negative limit, this point is to be considered alarming as far from standard operation. 

The severity with which to report alarms and the nature of the alarm itself should be related to the length 

of time the operating points are outside the standard deviation and how far they deviate in magnitude. 

Potentially, a signal that deviates stationary for multiple time intervals from 3 𝜎𝑥 should be considered an 

anomaly. Moreover, it is possible to determine whether there has been any degradation of the device, 

since most points would start working in a different regime from the original one. 

In the following figure has been reported an example of base line table, the baseline figure, the scatter 

plot used to generate the baseline and the idea of two potential events, with star marker, represented 

the anomaly and normal behaviour. 
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Figure 27. Example of baseline creation. 

 

7.4 Analysed Devices 

The devices that can be monitored are numerous, and the system has no limitations. 

The only limitation is the necessary instrumentation that must be present, since the system is completely 

data-driven. Indeed, the baselines are created from the data collected by the sensors, and the controls 

for signal deviation from its standard operation always come from the sensors. 

Baselines can consist of data of different natures from each other, such as pressures, temperatures, and 

vibrations. An example of monitoring a diesel generator might be as follows: Primary variable equal to 

the electrical load; Secondary variables to be monitored: 

• Cylinder exhaust gas temperature; 

• Vibration; 

• Oil temperature; 

• Temperature delta between engine and heat exchanger heat flows; 

• Fuel pressure; 

The system thus structured is very flexible and allows for easy expansion of the devices involved, with 

the only constraint being the sensors that must be present. 

  

BIN 

Anomaly behaviour 

Normal behaviour 
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8 Integrated Ship Energy Production, Distribution, Recovery and 

Management 

Approach based on evaluation of thermal fluxes of on-board installed devices. In this context it will be 

possible to include Waste Heat Recovery (WHR) system to optimize energy dissipation. With this 

approach it will be possible to perform an energy assessment according to potential refitting of the 

system. 

The idea is that, knowing all the devices installed on board the ship, it is possible to calculate the heat flux 

exchanged between them. In general, it is possible to divide all the components installed aboard the ship 

into three macro categories of energy users. The devices used for power generation, the devices that 

power the propulsive load, and the other shipboard loads that may be of a different nature, such as hotel 

or cargo handling. By knowing the relationship between these, it is possible to make predictions as 

operating conditions change and as installed components change, simulating the addition of useful 

devices to recover lost energy in the form of heat as exhaust fumes. 

The main step in conducting the above discussion is to know the plant schematics of the devices installed 

on board. 

 
Figure 28. pipeline of heat flux evaluation 

8.1 Model’s Performance Analysis 

In general, the heat flux equation for a heat exchanger involving water with specific heat capacity (cp) 

can be expressed as: 

 

𝑞 =  𝑚  𝑐𝑝  (𝑇2 −  𝑇1) 
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where: 𝑞 is the heat flux (in Watts); 𝑚 is the mass flow rate of water (in kg/s); 𝑐𝑝 is the specific heat 

capacity of water (in J/kg*K); 𝑇1 is the inlet temperature of water (in degrees Celsius or Kelvin); 𝑇2 is the 

outlet temperature of water (in degrees Celsius or Kelvin). 

This equation represents the amount of heat transferred per unit time between the water and the heating 

medium through the heat exchanger. The specific heat capacity of water is an important parameter in 

this equation, as it represents the amount of energy required to raise the temperature of water by 1 

degree Celsius or Kelvin. 

There are usually plate exchangers installed on board in which circuits exchange heat; these can be of 

different nature, air-water, water-oil, water-water. In general, ships use seawater as the main flow for 

open circuits. This is superheated to give up excess heat and release it to the outside. 

A plate heat exchanger is a type of heat exchanger that uses a series of thin plates, typically made of 

stainless steel, to transfer heat between two fluids. The fluids flow in separate channels, and heat is 

transferred between them through the plates, which have a large surface area relative to their volume. 

The basic design of a plate heat exchanger consists of a series of plates that are clamped together with 

gaskets between each plate to form two separate channels. The hot fluid and the cold fluid flow through 

each of the channels, and heat is transferred through the plates from the hot fluid to the cold fluid. Plate 

heat exchangers offer a number of advantages over other types of heat exchangers. They have a compact 

design, which allows for high heat transfer rates in a relatively small space. They are also highly efficient, 

with heat transfer coefficients that can be several times higher than those of other types of heat 

exchangers. In addition, plate heat exchangers are easy to maintain and clean, as the plates can be easily 

removed and cleaned individually. 

The heat transfer rate in a plate heat exchanger can be calculated using the heat flux equation described 

earlier, but the specific geometry of the plates can affect the heat transfer coefficient. In general, the 

heat transfer coefficient is proportional to the plate surface area and the velocity of the fluids, and 

inversely proportional to the plate thickness and the distance between the plates. The flow rate, 

temperature difference, and physical properties of the fluids also play a role in determining the heat 

transfer rate. 

Indeed, the heat flux equation for a plate heat exchanger can be expressed as: 

 

𝑞 =  𝑈𝐴𝛥𝑇𝑚 

 

where: 𝑈 is the overall heat transfer coefficient (in W/m2*K); 𝐴 is the heat transfer surface area (in m2); 

𝛥𝑇𝑚 is the logarithmic mean temperature difference (in degrees Celsius or Kelvin). 

The overall heat transfer coefficient, 𝑈, takes into account the thermal resistance of the plates, the fluid 

properties, and the flow rates. The heat transfer surface area, 𝐴, is determined by the number and size of 

the plates, and the logarithmic mean temperature difference, 𝛥𝑇𝑚, is a measure of the average 

temperature difference between the two fluids as they flow through the heat exchanger. 

The logarithmic mean temperature difference can be calculated using the following equation: 

 

𝛥𝑇𝑚 =  (𝛥𝑇1 −  𝛥𝑇2) / 𝑙𝑛(𝛥𝑇1 / 𝛥𝑇2) 

where: 
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𝛥𝑇1 is the temperature difference between the hot fluid inlet and the cold fluid outlet (in degrees Celsius 

or Kelvin); 𝛥𝑇2 is the temperature difference between the hot fluid outlet and the cold fluid inlet (in 

degrees Celsius or Kelvin). 

The heat flux equation for a plate heat exchanger can be used to calculate the heat transfer rate between 

the two fluids, which can be useful for designing and optimizing the performance of the heat exchanger. 

As mentioned earlier, knowing the flows exchanged between the different circuits makes it possible to 

hypothesize and simulate the addition of devices useful for recovering the energy lost to the 

environment. In particular, the waste heat recovery (WHR) is becoming an increasingly important area of 

focus in the marine sector, as it offers a way to improve energy efficiency and reduce greenhouse gas 

emissions. Waste heat is generated by various systems and processes onboard a ship, such as the main 

engine, auxiliary engines, and exhaust gas boilers, and can be recovered and reused to provide power 

and heat for other systems. 

One of the most common methods of waste heat recovery in the marine sector is through the use of 

exhaust gas boilers. These boilers use the waste heat from the ship's engines to generate steam, which 

can then be used to drive turbines and generate electricity or to provide heat for other systems onboard 

the ship. By recovering this waste heat, the ship can reduce its fuel consumption and emissions, as less 

fuel is needed to generate the same amount of power and heat. 

Another method of waste heat recovery in the marine sector is through the use of Organic Rankine Cycle 

(ORC) systems. ORC systems use a working fluid, such as a refrigerant or hydrocarbon, to generate power 

from low-temperature waste heat sources. In the marine sector, ORC systems can be used to recover 

waste heat from the engine's cooling water and exhaust gas and can provide additional power and heat 

for the ship's systems. 

Other waste heat recovery technologies that are being explored in the marine sector include 

thermoelectric generators, which can generate power directly from temperature differences, and heat 

pumps, which can provide heating and cooling for the ship's systems using waste heat as a source. 

Eventually, the waste heat recovery in the marine sector is a crucial area of focus for improving energy 

efficiency and reducing emissions, and a variety of technologies are being developed and deployed to 

make use of this valuable resource. 

 

8.2 Energy Production, Distribution, Management & Recovery Onboard Process 

Simulator 

The DT4GS Simulation, Prediction, Optimisation, and Management Apps will include a simulator of the 

Energy Production, Distribution, Management & Recovery onboard processes. 

This simulator will have a modular object-oriented open architecture in order to be applicable to most of 

the present / future ship propulsion-power plant configurations. 

The most typical propulsion-power configurations for merchant ships are Diesel (adopted for instance by 

the majority of recent large container vessels), where the propulsion power is provided by one (or two) 

slow-speed Diesel Engines and the electric power for shipboard services is provided by a set of Diesel 

Generators, and Diesel-Electric (adopted for instance by the majority of recent large cruise ships), where 

the propulsion shaft is driven by two Electric Motors and the electric power for both propulsion and 

shipboard services is provided by a set of Diesel Generators. 



Deliverable D1.2 | DT4GS Project | Grant Agreement no. 101056799 

© DT4GS, 2023 89 

 

Anyway, in both cases the main power source is a large slow-speed Diesel Engine with a thermal efficiency 

of about 50%, meaning that for each kW of utilizable shaft power about the same is dispersed as heat. 

Therefore, especially for vessels with high installed power (such as large container vessels and cruise 

ships), there is a large potential margin of fuel consumption reduction (and consequently of emissions 

reduction) from the recovery of this waste heat either directly in the form of thermal power or indirectly 

in the form of electric power: it is estimated that an optimized high-efficiency Waste Heat Recovery 

(WHR) Plant may enable up to 10% of the main Diesel Engine / Generator shaft power to be recovered. 

Cruise ships, being characterized by a Hotel Load for the Electric Users almost as large as the Propulsion 

Load as well as by an important direct heat request from the Heat Users, may benefit the most from WHR 

strategies and as a matter of fact WHR plants are already installed on many of these vessels albeit mostly 

to recover heat for the onboard Heat Users (such as production of Potable Water by the Evaporators, 

heating of Potable Water for Galley and Accommodation, AC Cooling Water preheating). For merchant 

ships, which are usually characterized by a relatively low (with respect to propulsion shaft power) request 

of electric power and an even lower request of heat for shipboard services, the appeal of WHR strategies 

(with associated costs) is in general rather scarce in presence of a traditional Diesel-Engine Propulsion 

Plant whilst it is higher in presence of a Diesel-Electric Propulsion Plant where the recovery of electric 

power may significantly decrease the Propulsion Load. 

It can then be concluded that the recovery of waste heat for use as additional electric power for ship 

propulsion and as additional electric power or heat for shipboard services may cut exhaust gas emissions 

and deliver fuel savings of ship transport up to 10%.   

By neglecting the heat dispersed in the air of the Engine Room through direct convection / radiation from 

the engine surfaces, the Waste Heat from a thermal ship engine is dispersed in the outside environment 

through the following three media: 

 

• LT Cooling Water from the LT cooling circuit of the engine jacket (about 60°C, low thermal value) 

• HT Cooling Water from the HT cooling circuit of the engine jacket (about 90°C, medium thermal 

value) 

• Exhaust Gas from the combustion within the engine cylinders (about 300°C, high thermal value) 

 

As a reference, the thermal balance of a typical Diesel-Engine is provided in the figure below: 
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Figure 29. Comparison between standard (left) and WHR (right) solutions. 

 

As for waste heat recovery from three waste heat sources, the following consideration hold: 

Due to its low thermal value, WHR from the LT water-cooling circuit is both technologically complex and 

economically inconvenient. 

• WHR from the HT water-cooling circuit can be used (and it is already implemented aboard many 

cruise ships) to distribute thermal power to the Heat Users (typically Hot Water Exhaust Gas 

Economizer for Fresh Water production or Potable Water / AC pre-heaters) through suitable Heat 

Exchangers.  

• WHR from the HT water-cooling circuit may be also used to supply electric power to the Electric 

Users through suitable ORC (Organic Rankine Cycle) or OKC (Organic Kalina Cycle, to increase 

efficiency if the input temperature is too low) systems, provided this ground-plant technology is 

adapted to the constraints posed by ship installation in terms of power / dimension ratio). 

• WHR from the HT water-cooling circuit may be also used to supply Cooling Water to the AC plant 

through suitable ACU (Absorption Chiller Unit) systems, thus reducing the electric power requested 

by the HVAC Chillers. 

• WHR from the EG can be used (and it is already implemented aboard many cruise ships) to generate 

saturated steam through suitable EGB (Exhaust Gas Boiler) or Steam EGE (Exhaust Gas Economizer) 

directly fitted to the Diesel Engines exhaust outlet supplying directly the produced steam to the 

Steam Users (typically in the Laundry and the Galley) and / or distributing its high-value (i.e. 180°C) 

thermal power to the Heat Users through suitable Heat Exchangers. 
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• The thermal power of the saturated steam produced by the WHR from the EG may be also used to 

supply electric power to the Electric Users through suitable ORC (Organic Rankine Cycle) systems, 

again provided this ground-plant technology is adapted to the constraints posed by ship installation 

in terms of power / dimension ratio). 

• The saturated steam produced by the WHR from the EG may be also used to supply electric power 

to the Electric Users through suitable Steam Power Turbine, provided this ground-plant technology 

is adapted to the constraints posed by the sub-optimal thermal value (too low) of the steam and by 

ship installation in terms of power / dimension ratio. 

• As an alternative or an addition to the previous WHR strategy, the EG can be fed (either in parallel 

or downstream the turbocharger from the engine) to a Gas Power Turbine thus directly supplying 

electric power to the Electric Users, provided this technology is adapted to the constraints posed by 

ship installation especially when used in conjunction with Steam ORC / EGE. 

The primary scope of the DT4GS baseline simulator should be the benchmarking of the energy efficiency 

of different WHR configurations, modelled through a limited set of design parameters, over a large set 

of service conditions representative of the whole operational profile of the ship.  

Therefore, it should be intended as a support to End Users at the very beginning of a new ship design, 

when a fast screening of possible alternative solutions is most needed but can be as well helpful to the 

End Users when considering the retrofit of an existing ship in order to improve its WHR performance. 

The WHR simulation will aim to evaluate the overall electric / heat energy balance of the ship and as such 

it will be able to manage the following processes: 

• FW production / distribution / consumption 

• Steam production / distribution / consumption 

• Electric power production / distribution / consumption 

 

From a steady-state point of view, thereby not modelling in real-time the internal processes occurring in 

each involved system and the regulation feed-back loop of the relevant mass flows and associated 

temperatures implemented to achieve the dynamic equilibrium.  

The WHR simulation will therefore not be a time-domain simulation solving a system of differential 

equations driven by initial conditions to analyse the dynamic evolution of the energy processes but rather 

a logical state-machine solving a system of algebraic equations with given known terms to determine the 

resulting balance state. 

Each simulation will thus correspond to a static set of operational conditions denoted as a “voyage 

condition”, which could either represent a stay in port or a navigation leg. A chain of sequential voyage 

conditions will therefore represent a typical “voyage” of the ship whereas a chain of voyages will 

represent the “operational profile” of the ship that is the set of operational / environmental conditions 

which the ship will likely encounter during a year of standard service. 

The WHR simulator should be therefore a part of a larger DT4GS baseline simulator, which will include a 

“voyage” simulator built-up according to the same organization principles as the former. 

Indeed, the voyage simulator will have in input an operation profile, consisting of a set of voyage 

conditions, each comprising: 

• a navigation leg to be crossed within an expected time. 

• a set of environmental conditions (i.e. sea / wind / current) likely to be encountered on the leg. 

• the service load expected on the leg. 

 



Deliverable D1.2 | DT4GS Project | Grant Agreement no. 101056799 

© DT4GS, 2023 92 

 

The service load will have in general the following breakdown: 

• propulsion power (in case of Diesel-Engine propulsion) 

• electric power request 

o propulsion load (in case of Diesel-Electric propulsion) 

o hull & engine services load 

• hotel load  

• FW request 

• CW request 

• Steam request 

 

In particular, the voyage simulator will provide the WHR simulator, for each voyage condition, the 

Propulsion Power requested to the Main Propulsion Plant and the Electric Power requested to the Power 

Generation Plant. 

Based on this, the WHR simulator will estimate the Waste Heat produced by the Power Generation Plant 

and by the Main Propulsion Plant (in case of Diesel-Engine propulsion), which will be used as an input to 

the WHR Plant model. 

Based on this input (and the prevalent internal / external environmental conditions), the WHR Plant 

model will provide an estimate of the electric power and thermal power recovery: it must be considered 

that, when electric energy recovery from the waste heat of Diesel Generators is implemented, the 

recovery process should be analyzed iteratively as the resulting reduction in the electric load will in turn 

reduce the waste heat and thus the recovery.  

In short, the main features of the DT4GS baseline simulator will be:  

a. Recommend an optimal configuration for the WHR Plant.  

b. Estimate the effects and associated fuel savings of implementing one or more Energy Recovery 

Units.  

c. Estimate the Energy Efficiency of a given WHR Plant. 

As there is a diversity of possible WHR Plant configurations, depending on ship types and operational 

profile, it is of primary importance for the simulation tool to be easily configurable. 

According to these agreed objectives, the simulation tool will be developed within a high-level systems 

theory framework using input/output functional blocks which can be easily added / removed / inter-linked 

to represent any viable WHR Plant. 

The typical high-level functional architecture of the WHR process onboard of a cruise ship was used as a 

reference block-diagram for the Research Project as per the figure below: 
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Figure 30. Example of high-level functional architecture of the WHR process in cruise ship. 

Specifically, the model illustrated in the block-diagram is the following: 

• the DG Plant is modelled in the simulator as a system which receives in input a given heat in the form 

of gross calorific power of fuel and provides in output, based on assumed electrical efficiency, a 

certain amount of waste heat dissipated through EG / HT / LT plus a certain amount of electric power.  

• any recovery unit is modelled in the simulator as a system which receives in input a certain amount 

of waste heat conveyed by hot water / steam / exhaust flow and recovers its either directly as a water 

/ steam flow (direct heat recovery) or indirectly as electric power (direct electric power recovery by 

ORC or indirect electric power recovery by ACU). The performance of the WHR Plant shall be 

ultimately measured in terms of equivalent FOC saving by OFB (in case of heat recovery) or DG (in 

case of power recovery).  

• the waste heat recovery from the exhaust gas is performed by the EGE Units, which shall make 

available this recovered heat as saturated steam (through a Steam EGE) and optionally as hot water 

(if a centralised HW Recovery system is implemented with a HW EGE in sequence to a Steam EGE).  

The total heat conveyed by hot water / steam shall be recovered by any of the following users: 

• Steam / Water Heaters 

• Evaporators  

• ORC units or ACU 

The efficiency of any thermal exchanges shall be ideally considered equal to one whereas the efficiency 

of any power recovery by ORC/ACU shall be taken according to their stated nominal performance. 

A more detailed overall schematic overview of the Tri-Generation or CHCP (i.e., Combined Heat, Cooling 

& Power) Plant of a diesel-electric cruise ship, is illustrated in the block-diagram below.  
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Figure 31. overall schematic overview of the Tri-Generation. 

 

With reference to this figure please consider the following remarks. 

• Steam system, HT Direct Recovery and Centralized Hot Water system are well known solutions which 

have been already installed on board of various cruise ships. 

• Feasibility of a Hot Water Economizer system and of LT Direct Recovery is still to be ascertained. 

• The heat dissipated by the LT circuit is assumed to result from engine Charge Air LT cooler and LO 

cooler, therefore only indirect heat recovery from the LO circuit through the LT circuit shall be 

considered. 

• Evaporator pre-heating can be selected by the User as a possible LT Direct Recovery user. 

• ORC Recovery Units and Absorption/Adsorption Chillers units can be selected by the User as possible 

users of recovered heat from hot water / steam. Considering the assumed temperature working 

ranges, ORC shall be preferably fed by Steam whilst ACU shall be preferably fed by Hot Water.  

• SCR / Scrubbers (despite their being included in this overall view for sake of completeness) and 

counter-pressure type Steam Generators shall not be modelled in the simulation framework, as 

neither shall be the possibility to recover heat from incinerator exhaust gases.  

Previous general remarks require some more detailed explanation. 

It shall be possible for the User to define a better performing Steam EGE i.e. one with a lowest outlet 

temperature than that listed in the look-up tables of the devices available in the equipment library.  

Whenever doing this the User should be aware that the main limitation on the maximum amount of 

recoverable heat from DG exhausts depends on two main factors: 

• The maximum allowed counter-pressure recommended by the DG supplier. 

• The minimum allowed temperature at the outlet of the EGE according to the EGE supplier. 

The latter statement can be further elaborated.  

Waste heat recovery simulator tool   - Annex 1  Waste Heat Recovery  Overall view
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A Steam EGE should always come along with an assumed operating steam pressure which in its turn fixes 

the temperature of the saturated steam. Existing Steam EGE typically have operating steam pressures of 

about 9 bar, so to ensure a safe circulation of the saturated steam through the steam system: this 

corresponds to a saturated steam temperature of about 180°C.The operating steam pressure could be 

somewhat lowered thus decreasing the temperature of the saturated steam, even if it is not 

recommended to go below a value of about 6 bar. As the latter pressure value corresponds to a saturate 

steam temperature of about 160°C, it would be ideally possible to lower the outlet temperature at the 

Steam EGE up to about 160°C. From a practical standpoint, however, the minimum outlet temperature at 

the Steam EGE shall be generally about 20°C higher than the saturated steam temperature, which means 

that to go below about 180°C should not be operationally feasible. In fact, a lower difference value 

between exhaust gas outlet and saturated steam temperature will involve an increase of dimensions, 

weight, and counter pressure.           

As foresaid it would be possible for the User to define a two-stage EGE, the first stage being a Steam EGE 

for saturated steam production and the second stage being a HW EGE for hot water heating using the 

residual heat from the exhaust gas at the outlet of the first stage. In this case the outlet temperature at 

the HW EGE shall not be affected by any limitations due to the operating values of the saturated steam. 

Nevertheless, there is still a main technical limit to the outlet temperature at both the Steam and HW EGE 

and this is represented by the sulfur acid corrosion which depends on the percentage of sulfur present in 

the burnt fuel. According to state-of-the-art, thereby considering adoption of standard materials for EGE 

and stack pipes and continuous use of HFO/IFO with a sulfur content less than 4.5% as required by present 

normative, the minimum and safe outlet temperature to prevent excessive corrosion is 160°C.  

The typical WHR scheme of a Diesel-Electric merchant ship is the following: 

 
Figure 32. typical WHR scheme of a Diesel-Electric. 

 

As aforesaid, the WHR part of the DT4GS simulator should be able to model these (and possibly other) 

configurations. 

It must be finally considered that the necessity of reducing emissions is leading to the installation of SCR 

or Scrubbers before the funnels’ outlet. This may pose some problems to the concomitant installation of 
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EG recovery units between the turbocharger outlet and the aforesaid emissions-abating devices as the 

resulting total counter-pressure at the turbocharger may be too high: 

• Regarding SCR or Scrubbers, given the state-of-the-art of available abatement technology for 

exhaust gas emissions from marine DG’s, a configuration with two economizers (Steam and Hot 

water), one SCR and one Scrubber for each DG would be not feasible since the total counter-pressure 

at the turbocharger would be too high. 

• As an alternative to the former solution, a counter-pressure Gas Power Turbine could be installed at 

the outlet of each turbocharger, but the feasibility of this solution must be again checked against 

the total counter-pressure at the turbocharger; also, it should be also checked the possibility to 

further interpose Steam EGE between the turbine outlet and the SCR / Scrubber or have them in 

parallel with the turbine. 

• In principle a counter-pressure Steam Generator could be installed at the outlet of each EGB for heat 

recovery in the form of electric power. However, this would require the industrial availability of a 

high-temperature EGB able to produce saturated steam at much higher operating pressures (at least 

15 bar) and thence temperatures (indicatively about 240°C) than those of the state-of-the-art EGB. 

Note that such steam temperature increase implies a consequent reduction in the heat recovered 

from the exhaust gas. It should also be noted that, if implemented, the Steam Generator would 

replace the ordinary EGB to serve the steam users as its output steam flow would have pressure / 

temperature values similar to those of an ordinary EGB.  

• On the other hand, because the exhaust gas temperature at the outlet of the high-temperature EGB 

would be much higher than usual, a HW EGE could be utilized to recover the residual heat from these 

hot exhausts.   

The WHR simulator will feature a built-in library of the functional blocks of the different equipment and 

systems typically present in a generic CHCP Plant of a merchant / cruise vessel. 

In general, these blocks will pertain to three main categories: 

• Generation units 

o Diesel Engines 

o Alternators 

• Recovery units 

o Heat Recovery Units 

o Electric Recovery Units 

• Users 

o FW Users 

o CW Users 

o Steam Users 

o Electric Users 

Generation and Recovery units will be modelled in terms of input/output mass/energy flow based on 

characteristic parameters and functional curves implemented in look-up tables, which could be accessed 

and modified by user, whereas Users units will be only modelled as input variables in terms of User-given 

request of fresh water / chilled water / saturated steam / electric power. 

The following Thermal Power Recovery Unit will be included in the system library: 

• Steam Economizers  

• HW Economizers 

• Evaporators  
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• Heat Exchangers for Heating / Re-Heating / Pre-Heating of FW 

• Absorption / Adsorption Chillers Units 

The following Electric Power Recovery Unit will be included in the system library: 

• Organic Rankine / Kalina Cycle Units 

• Steam Power Turbines 

• Gas Power Turbines 

The following operational conditions shall also be defined for each simulation: 

• Engine Room temperature 

• Sea water temperature 

• Type of fuel / Sulphur content of fuel / Specific calorific power of fuel  

 

The final output of the WHR simulator will be the FOC reduction resulting from the intended WHR Plant 

with respect to the baseline configuration. 

The Energy Efficiency of a given WHR configuration shall be determined based on the estimated FOC 

reduction with respect to the baseline configuration, as per the recovery breakdown below: 

• Saturated Steam generation 

• Fresh Water generation 

• Chilled Water generation 

• Electric Power generation 

Eventually, the following guiding principles will apply: 

• the FOC reduction resulting from any electric power recovery will be estimated as the equivalent 

FOC that would be needed by the GenSet to produce the same electric load at the given operating 

conditions. 

• the FOC reduction resulting from thermal power recovery in favour of Electric Heaters will be 

estimated based on the amount of electric power which would be needed by the Electric Heaters to 

provide the same heat. 

• the FOC reduction resulting from thermal power recovery in favour of OFB will be estimated as the 

equivalent FOC which would be needed by the OFB to produce the corresponding amount of steam. 

• the FOC reduction resulting from the use of Evaporators will be estimated based on the amount of 

electric power which would be needed by the RO Plant to provide the same amount of FW. 

• the FOC reduction resulting from the use of ACU will be estimated based on the electric power that 

would be needed by the HVAC Chillers to produce the corresponding amount of CW. 
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9 Life Cycle Assessment Model 

Sustainability in ship operations in terms of energy efficiency and the emissions impact on the 

environment constitute a major concern in the maritime industry. The various scenarios investigated 

through different LCA techniques aim to provide a systematic analysis that helps to identify, quantify, 

interpret, and evaluate the environmental impact of different mitigation strategies through the vessel's 

life. This section aims to investigate LCA in the maritime sector by a different dynamic perspective, 

coupling data driven methodologies with existing marine engineering theory. Conventional studies and 

frameworks found in pertinent literature about LCA in the maritime industry, consider the vessel as an 

interactive entity with its environment, described by a multitude of variables each one affecting the 

stages in a vessel's life from a different aspect. These stages correspond mainly to 1) the shipbuilding 

stage, 2) ship operation including major maintenance activities, 3) and finally the stage of ship 

dismantling/recycling. Initial studies on the subject focused on partitioning this entity in sub-systems 

describing different parts of the vessel like (machinery, equipment for cargo etc.). They also attempt to 

define the distribution boundaries of the control variables as well as the indicators, for each vessel 

empirically, a process highly subjective, that eventually results in non-optimal strategies in terms of 

financial and environmental efficiency. 

This approach aims to present a holistic updated view on LCA in the maritime sector by utilizing a vast 

amount of data and exploiting a digital replica (digital twin) of the vessel, to construct dynamically, tailor 

made optimum control variables and KPIs for each LCA scenario, as well as assessing and adapting these 

scenarios through simulation models, as the life of the vessel progresses. 

9.1 Existing LCPA Tool (Design & Retrofitting/Operation/Recycling)  

DANAOS has accumulated the past few years a versatile legacy from participating in several EU projects 

related to LCA analysis and design optimization. Our aim is to appropriately exploit this heritage to 

facilitate in the progression of the project as far implementation is concerned, as well as to use it as a 

vantage point to set the benchmarking criteria, to transcend and extend beyond current trends and 

existing SOTA solutions. 

The sections that follow are devoted in outlining the main modules of a LCA toolkit, the control variables 

as well as the KPIs utilized to assess alternative designs or retrofitting solutions for a particular vessel, in 

the context of HOLISHIP EU project GA: 689074. The exact calculation of the variables utilized to assess 

the financial and environmental impact, of different scenarios does not belong in the scope of this 

deliverable. 
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Figure 33. Main building blocks of LCA tool 

KPIs to be calculated 

In this part of the tool, the user will be able to select which KPIs is interested in for the analysis (Table 7). 

Moreover, the weight of each KPI for the LCPA Index calculation is to be assigned. Depending on the KPIs 

selected, certain data are required to run the analysis. The system shall be able to recognize which data 

shall be inserted or neglected. 

Table 7. Selection of KPIs 

Data collection Selection Weight Total weight 

1. BLD  yes  0.20 

1.00 

2. CAPEX no  - 

3. OPEX yes  0.20 

4. M&R no - 

5. AAC yes 0.20 

6. RFR no  - 

7. NPV no  - 

8. AAB yes 0.40 

9. EBITDA no - 

10. ROIC no  - 

        

11. EEDI yes 0.60 1.00 
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12. NOx no - 

13. SOx no  - 

14. CED yes  0.40 

15. PM no - 

        

LCC yes 0.50 
1.00 

LCA yes 0.50 

 

Level of detail for KPI calculation 

The collection of data has been based on the Ship Breakdown Structure (SBS) of these two voices. The 

SBS will be also used to define the items modelled in the LCPA structure. Depending on the level of detail 

specified, different amount of data is requested. 

Definition of Reference ship cost and technical data 

Here technical and cost data of the reference ship will be inserted. This ship will be the reference for the 

evaluation of costs and emissions for the new design configuration. During the analysis of KPIs in previous 

phases of the project, it has been assessed that Building Cost and Opex are the two pillars to evaluate the 

economic performance of a vessel. Data should be received from ACs and other design WPs (e.g., WP4 

LLs). 

Automatic insertion of data for new design configurations 

In this section, similarly as for reference ship data, technical data of the new ship are inserted, based on 

the SBS. Costs data are not required in this section (except for few voices if they are known). Costs are 

calculated through an extrapolation of the reference ship values, developed from statistical data and 

physical considerations. New technical data should come from ACs and other design WPs (e.g., WP4 LLs). 

Definition of external parameters 

External parameters are not directly affected by ship design 

Examples: fuel cost, steel cost, shipyard indirect costs, etc. 

External parameters should be kept constant when assessing all design configurations 

In other situations, it could be interesting to assess how KPIs vary when external parameters 

change for the same ship (example variation of fuel cost, steel cost, etc.).  

LCPA Tool 

This part is the core of the tool. It is where technical data of the new ship design are used to predict costs 

(through Cost Estimating Relationships, CERs) and emissions through the life cycle of the ship. The model 

of the ship will be built in the three phases of her life cycle: 

Phase 1: Design and Construction 

Phase 2: Ship operation 

Phase 3: Disposal/Recycling 

This procedure shall be done for both the reference ship and new design configurations. 

KPIs to be calculated and LCPA Index calculation 

Based on the selection of KPIs in the first module of the tool and calculation of costs and emissions in the 

LCPA structure, KPIs can be calculated for all ship configurations analysed. After the collection of all KPIs, 
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coefficients can be defined and the LCPA Index can be assessed for each ship configuration, obtaining 

the best design. It is important to highlight that this procedure is subjective, because KPIs selection and 

weight of coefficients totally depend on the user. Moreover, only cost and emissions are evaluated, while 

other aspects of the ship (such as safety) are not implemented in the current version of the tool.  

Input data – Reference scenario 

Here the input data of the reference ship are collected. To facilitate the utilization of the sheet, a legend 

in terms of different colours has been created: 

 

Table 8. Legend of data typologies 

 

 

The first three rows in Table 8 describe the type of parameters which can be inserted in the sheet. These 

are: 

Design parameters: technical data of the ship; these directly depend on the design of the ship and 

they are not influenced by external factors 

External parameters: they do not depend on the design of the ship directly. 

SBS costs: costs for each significant item of the Ship Breakdown Structure. 

The last four rows in Table 1 explain how the user shall use the cell. There are four options: 

Insert datum: in these cells, the user shall insert a datum of the ship 

Datum already inserted above: useful datum is recalled (copied) from another cell of the 

spreadsheet where it has been already inserted for some other reason 

Automatically calculated: the value in this cell is automatically calculated by the spreadsheet 

Do not fill: (self-explaining), some cells in the new configuration ship calculations are empty due 

to technicalities related to the use of excel 

After the legend, the main general technical data of the reference ship should be inserted (Table 9): 
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Table 9. Main technical data 

 

 

In some cells, there is already a list of data which can be used by the designer to select the option required. 

This happens for example when the ship type is specified. 

After this section, data definition is based on the SBS. Each 1st level voice (KPI) is therefore divided in 

different parts according to what is defined in the SBS. Analysing the Building Cost, the sheet is organized 

as follows: 

 

LEVEL   
inserted calculated level 

1 

1. Building Cost 

(w/o 1.5) [€] 
  

                                        

-    
2 

DWT [t] 81700     

Cubic number 

[m3] 
194346     

Operational 

speed [kn] 
24.5     

 

 

In this case, technical data are automatically inserted (grey cells). The selection of level on the right side 

is referred to the calculation of cost data for the new configuration ship and for the insertion of data in 
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this sheet. In fact, it could happen that the designer is not interested in a detailed analysis of the building 

cost; therefore, it is not necessary to insert detailed data in this case. Level 1 means that the level one 

voice of the SBS will be calculated for that KPI. If level 2 is selected, the tool shall be able to calculate the 

level 1 voice from the calculation of level 2 voices. The same thing happens with the calculation of level 2 

cost voices, with the possibility to choose between level 2 and 3. 

It is important to initiate data insertion at the higher level of detail. Due to the structure of the 

calculation module, it is also required to insert data for lower levels of detail.  

If level 2 is selected, data for level 2 voices of SBS shall be inserted. In this summary, only the structure 

cost will be shown. The data required to evaluate the structure cost are defined as follow: 

 
Figure 34. Structure cost, data insertion 

 

Input data – New design configuration 

Here the input data of the reference ship are collected. However, cost values shall not be usually inserted, 

since they will be evaluated through calculation. The main structure of this sheet is identical to “Sheet 1: 

Input data – Reference Ship”. 

One of the differences (as concerns the SBS voices analysed) is that work hours per tonne values in this 

sheet are calculated based on the producibility of that material as follow: 

 

Calculation of new values (Financial assessment) 

In this layer of the tool, costs related to the new design configuration are assessed, based on data which 

have been previously inserted. Coefficients for formulation are not always specified inside the text and 

can be changed by the user. In the majority of cases analysed, coefficients have been determined using a 

physical and theoretical approach. Values should generally be validated for a more precise result. 

The developed procedure works well and smoothly if the “topology” and systems on board do not 

change significantly from reference ship to new design configurations analysed. In case deep 

modifications are proposed, it is better to define a new reference ship for a new design investigation. 

1. Building Cost (BLD) [€] 

1.1 Structure cost (STR) 

1.2.1 Main Engines and 1.2.2 Electricity Generators 

1.2.3 Power transmission 

1.2.4 Propeller 
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1.2.5 Steering system 

1.2.6 Boilers/Heat Recovery system 

1.2.7 Manoeuvring system 

1.3 Auxiliaries and Outfittings (A&O) cost 

1.3.1 Electricity distribution 

1.3.2 Engine’s aux. system: 

1.3.3 Fire-fighting/safety systems 

1.3.4 Anchoring 

1.3.5 Bildge system 

1.3.6 Ballast system 

1.3.7 Painting and coatings 

1.4 Systems for Payload 

1.5 Shipyard indirect costs 

2. CAPEX 

3.OPEX and Revenues 

3.1 Operating Costs 

3.1.2 Crew wages 

3.1.3 Stores 

3.1.4 Lubricants 

3.1.5 Administration & Management 

3.2 Voyage Costs 

3.2.1 Fuel Consumption  

3.2.3 Port Charges 

3.2.5 Tugs for Manoeuvring 

3.2.4 Canal dues 

3.3 Costs related to Payload 

3.5 (4.) Maintenance & Repair (M&R) 

3.5.1 Operational Maintenance 

3.5.2 Scheduled dry dock 

3.6 Insurance 

3.6.1 Hull and Machinery 

3.6.2 P&I   

Fuel Consumption for LCA 

In this layer of the tool, CO2, SOx and NOx yearly emission values are determined based on the amount 

of fuel used. Two different procedures can be adopted to determine this value. The one concerns 

calculating FOC from reported operational data inserted in the variables definition layer of the tool or by 

incorporating SFOC and Power values for each operating condition. 
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After this, depending on the type of fuel and systems used on board, values for kgCO2, kgSOx, kgNOx 

per ton of fuel should be inserted. In this way it is possible to evaluate the following values:  

• KgCO2 / year 

• KgSOx / year 

• KgNOx / year 

which will be used to calculate EEDI, SOx emission and NOx emission KPIs. 

 

LCPA structure, Time Integration graphs and KPIs for LCPA Index 

 

In this part of the tool the SBS cost voices are shown for both reference ship and new design 

configuration. With this way it is possible to analyse and outline the differences between the two 

scenarios. 

This module entails a graph of cost and revenues in operational phase for both reference ship and new 

design configuration. KPIs are calculated for reference ship and new design configuration.  After this, KPIs 

coefficient are evaluated: 

Depending on the parameter taken into account, coefficients can be defined as follow. It is important to 

remind that this procedure has been developed to compare design configurations and not to assess 

economic and environmental performances of a single vessel. 

• Earnings parameters (such as NPV, AAB) 

They reach their optimum when the parameter reaches the higher value; therefore, it is possible to rank 

them comparing their maximum; a non-dimensional coefficient for the i-th scenario can be evaluated as: 

 

The coefficient is always defined between zero and one, even if some or all solutions are negative (loss 

of capital). There is always a solution with coefficient equal to zero and another one with coefficient equal 

to one. 

• Cost parameters (such as CAPEX, OPEX): 

They reach their optimum when the parameter reaches the minimum value; therefore, it is possible to 

rank them comparing their minimum; a non-dimensional coefficient for the i-th scenario can be evaluated 

as: 

 

Again, the coefficient is always defined between zero and one. There is always a solution with coefficient 

equal to zero (worst) and another one with coefficient equal to one (best). 

• Environmental parameters (such as CED) 

They can be treated similarly as costs, since the optimum solution is the minimum one: 
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Environmental parameters (such as EEDI) could have a maximum limit given by regulations. In this case, 

the solutions with KPIi>KPIlim shall not be considered in the calculation process. 

Defining coefficients in this way, it is not possible to calculate some of them when there is only one 

solution (i.e., NPVmax=NPVmin). This happens because reference solutions (minimum and maximum) 

depend on the configurations analysed. If denominator is equal to zero, that is a certain KPIs for different 

solutions is the same, that KPI should not be considered in the decision-making process, since it does not 

influence the final result. 

In order to keep track of economic and environmental performances, two different coefficients (LCC 

Index and LCA Index) can be calculated before merging them in a unique LCPA Index. In this way, during 

the merge, relative weights of Indexes can vary according to the designer point of view. Weights are 

defined in a table in this spreadsheet. This can be formulated as follows: 

 

 

Finally, a global LCPA Index is calculated: 

 

Another advantage of this method is the possibility to give different weights to KPIs in the decision-

making process, as well as increase or decrease the influence of LCC or LCA in the final assessment 

according to the desire of ship owners and shipyards. On the other hand, the freedom to assign weight 

at all stage of the process has a strong influence on final results obtained. Increasing the influence of a 

KPI could mean that a design has a better performance, while this could be not true with other weights 

assigned.  

For a correct visualization of spider graph results, the user should select coefficients of interest modifying 

graph data selection. In data collection table, for a correct calculation of coefficients, do not leave empty 

columns; if few configurations are analysed, filled the las columns with result of one solution. In this way, 

the spider graph can be visualized correctly. 
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10  Conclusions 

Operational performance measures may be classified into four main areas [65]: 

• Power plant and auxiliaries: Engine corrosion and oil deposits 

• Propeller efficiency: Affected primarily through propeller blade roughness and damage 

• Hull resistance: Affected by mechanical, chemical and biological deterioration of the hull 

• Navigation, steering and routing: Speed, displacement, trim, plus dynamic effects of ship motions, 

steering and weather. 

The interactions between the above measures are complex. For instance, the ship’s fuel consumption, 

rpm, draught, degradation of systems (engine, hull, propeller) and the environmental conditions are 

linked in a manner that is not immediately clear due to the often non-linear relationships between the 

various elements.  This necessitates the multitude of engineering analysis and simulation models that 

incorporate physics (‘white box’), empirical measurements (‘grey box’) (as well as pure data driven 

(‘black box’) elements. 

The assessment and reduction of fuel consumption in the maritime industry are crucial endeavours in the 

pursuit of a more sustainable and efficient shipping sector. This deliverable has explored a comprehensive 

approach to achieve fuel efficiency by incorporating various methodologies and models across different 

aspects of ship operations. 

By adopting effective assessment of ship’s consumption based on white and grey box approach, it has 

been possible to address voyage optimization strategies such as route planning, weather routing, and 

the implementation of just-in-time model, ship operators can optimize fuel consumption by taking 

advantage of favourable conditions and minimizing idle time. These practices not only reduce operational 

costs but also contribute to minimizing environmental impact. 

The integration of hull and robotics inspection models plays a vital role in maintaining optimal ship 

performance. Regular inspections using advanced technologies allow for the timely detection and 

resolution of potential issues, ensuring that ships operate at peak efficiency. This proactive approach 

reduces fuel consumption caused by drag and mechanical inefficiencies, ultimately leading to substantial 

energy savings. 

Condition-based monitoring, enabled by sensor technologies and data analysis, offers valuable insights 

into a ship's performance and allows for proactive maintenance. By identifying and addressing equipment 

malfunctions or performance deviations promptly, fuel-consuming inefficiencies can be mitigated, 

optimizing operational efficiency and reducing the overall fuel consumption of the vessel. 

The use of energy simulators provides a powerful tool for ship operators to evaluate and analyse different 

energy management strategies. Through simulations, operators can identify the most fuel-efficient 

operating parameters, optimizing energy consumption and reducing the environmental impact of ship 

operations. This informed decision-making process facilitates the implementation of sustainable 

practices and the reduction of fuel consumption. 

Eventually, the life cycle assessment model enables a comprehensive evaluation of a ship's environmental 

footprint throughout its entire life cycle. By considering all stages, from raw material extraction and ship 

construction to operation, maintenance, and end-of-life disposal, stakeholders can identify opportunities 

for improvement and implement sustainable practices that minimize fuel consumption and 

environmental impact. 
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In conclusion, the methods and models discussed in this deliverable provide a holistic approach to 

assessing and reducing fuel consumption in ships. By integrating navigation management, hull and 

robotics inspection, condition-based monitoring, energy simulation, and life cycle assessment, ship 

operators can enhance fuel efficiency, reduce environmental impact, and optimize operational 

performance. Embracing the models and workflows described in this deliverable under the DT framework 

that is developed in DT4GS will contribute towards a more sustainable and economically viable future, 

fostering a greener and more efficient global shipping sector. 
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