
© DT4GS, 2022

Digital Twins for Green Shipping

Document Information

Grant Agreement No 101056799 Acronym DT4GS

Full Title
Open collaboration and open Digital Twin infrastructure for
Green Smart Shipping

Call
HORIZON-CL5-2021-D5-01: Clean and competitive solutions
for all transport modes

Topic
HORIZON-CL5-2021-
D5-01-13

Type of action RIA

Coordinator INLECOM GROUP

Project URL https://dt4gs.eu/

Start Date 01/06/2022 Duration 36 months

Deliverable D2.8 Work Package WP 2

Document Type OTHER Dissemination Level PU

Lead beneficiary IBM

Responsible author Fearghal O'Donncha

Contractual due date 30/11/2023
Actual submission

date
30/11/2023

D2.8: DT4GS Edge and Orchestration Infrastructure (v1)

Ref. Ares(2023)8191038 - 30/11/2023

javascript:;
javascript:;
https://dt4gs.eu/

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 2

Disclaimer and acknowledgements

This project has received funding from the Horizon Europe framework programme under Grant

Agreement No 101056799

Disclaimer

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or CINEA. Neither the European Union nor the granting authority can be
held responsible for them.

While the information contained in the document is believed to be accurate, the authors or any other
participant in the DT4GS consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the DT4GS Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission
herein.

Without derogating from the generality of the foregoing neither the DT4GS Consortium nor any of its
members, their officers, employees, or agents shall be liable for any direct or indirect or consequential
loss or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© DT4GS Consortium. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation, or both. Reproduction is authorised provided the source is
acknowledged.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 3

Document information

Document history

Version Date % Changes Author

0.1 [01/09/2022] 5% Created the ToC draft Sofiane Zemouri (IBM)

0.2 [31/05/2023] 25% Added background material Fearghal O’Donncha (IBM)

0.3 [01/07/2023] 45%
Added architecture details and use
case examples and documentation

John D. Sheehan (IBM)

0.4 [20/09/2023 55%
Added background material related
to edge literature review and
motivation

Fearghal O'Donncha (IBM)

0.5 [28/10/2023] 65%
Added overview of Edge architecture Fearghal O’Donncha / John D

Sheehan (IBM)

0.6 [3/11/2023] 75%
Added details on the creation of
policies for deployment

Fearghal O’Donncha (IBM)

0.7 [10/11/2023] 85%
Added details on AI-backed
contributions

Fearghal O’Donncha (IBM)

0.8 [20/11/2023] 85%
Improving structure, adding exec
summary and conclusion, adding
mapping to requirements

Fearghal O’Donncha (IBM)

0.9 [25/11/2023] 95% Incorporating reviewers comments John D Sheehan (IBM)

1.0 [30/11/2023] 100% Final version Fearghal O'Donncha

Quality Control (includes peer & quality control reviewing)

Date Version Name (Organisation) Role & Scope

[30/09/2022] 0.2 WP2 QM ToC Approval

[20/11/2023] 0.9 Dimitris Skoutas (ATH) Reviewer 1

[27/11/2023] 0.9 Bill Karakostas (INLECOM) Reviewer 2

Contributors

Contributor Name Organisation (Acronym)

Fearghal O'Donncha IBM

John D. Sheehan IBM

Sofiane Zemouri IBM

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 4

Executive summary

This report outlines the edge and cloud technical architecture for the DT4GS project. Architecture choices

and decisions are shaped by the specific requirements of the four living labs use cases. Over the first 18

months of the DT4GS project, we collated these requirements through numerous meetings, reports, and

deliverables from each of the living labs. In response, we evaluated multiple technological solutions, and

identified the open-source solution – OpenHorizon – as the most fitting architectural framework.

The report delves into an in-depth analysis of the technical nuances of edge and cloud computing within

the maritime sector. Driven by diverse use cases from the four living labs, which include tanker, container

ship, roll-on/roll-off passenger, and bulker services, it scrutinises the unique needs and requirements

specific to different types of shipping services. This encompasses a detailed technical comparison of

various cloud and edge computing solutions, such as Kubernetes, IoT Azure Edge, KubeEdge, Red Hat

Advanced Cluster Management, and KubeStellar, all evaluated against the backdrop of user-driven

requirements.

The report provides a detailed description of the OpenHorizon platform for managing the service

software lifecycle of containerized workloads and related machine learning assets. In particular it focuses

on the requirements to address application placement at scale and manage operations in conditions with

limited or sporadic connectivity.

A significant element of this deliverable is the analysis of computing needs for advanced digital twin

functionalities in the shipping industry. It considers the diverse characteristics and requirements of the

four living labs, focusing on scalability, resilience, usability, and system administration. This includes

considerations of typical shipping routes, operational needs, skill availability, security, and connectivity.

In its concluding section, this deliverable explores the role of AI in two key areas: firstly, in simplifying the

management and orchestration of applications across distributed cloud and edge computing

environments within the shipping industry. This includes examining how innovation can meet the

demands for scalability and the resulting increases in productivity. Secondly, it looks at how AI can aid in

developing a scalable model library that is versatile enough to meet the diverse needs of the shipping

sector.

This report represents the first version of the deliverable. The upcoming version (D2.9) to be delivered in

M34 will provide a more detailed exploration into enhancements powered by AI, specifically designed to

cater to the distinct requirements and challenges of creating digital twins for green shipping.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 5

Contents

1 Introduction .. 9

1.1 Mapping DT4GS Outputs and Task Description ... 10

1.2 Deliverable Overview and Report Structure .. 12

1.3 DT4GS HQ-Ship interaction scenario .. 12

1.3.1 Cloud Vs Edge Computing ... 13

1.3.2 Why Edge Computing in the Maritime Industry .. 13

2 DT4GS Cloud to Edge Architecture ... 16

2.1 State of the Art in Edge Computing ... 16

2.2 Evaluating existing edge-computing solutions .. 18

2.2.1 Azure IoT Edge ... 18

2.2.2 Red Hat Advanced Cluster Management (RHACM) .. 19

2.2.3 KubeEdge ... 19

2.2.4 KubeStellar .. 20

2.2.5 Open Horizon .. 20

2.2.6 DT4GS Edge Solution ... 21

2.3 Full Stack Edge Solution .. 22

2.3.1 Edge Infrastructure and compute .. 23

2.3.2 Edge platform and orchestration ...24

3 DT4GS Headquarters Infrastructure ... 27

3.1 Overview of the headquarters testbeds (LLs) ... 27

3.2 Service requirements and limitations .. 28

3.3 Service Blueprint – Provisioned services on the headquarters... 31

4 DT4GS Far Edge (Vessel) Infrastructure .. 34

4.1 Overview of the ship testbeds (LLs) ... 34

4.2 Far Edge Constraints ... 35

4.3 Testing Environment ... 35

4.4 Service Blueprint – Deployable library on the ship .. 35

5 DT4GS Enhanced Intelligence in data collection, service provisioning and orchestration 39

5.1 Data collection optimisation – state of the art ... 39

5.2 AI-assisted service provisioning and orchestration solutions ... 41

6 Conclusions ... 44

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 6

References .. 45

Annex I .. 47

Quickstart, setup server ... 47

Quickstart, adding an additional edge node ... 49

install docker on edge node ... 49

install open-horizon cli and daemon on edge node ... 49

configure horizon daemon on edge node .. 49

Troubleshooting ... 50

Deploying a container to an edge node - 1 ... 51

Deploying a container to an edge node ... 52

Deploying multiple dependent containers to an edge node .. 55

Updating a deployed container ... 60

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 7

List of figures

Figure 1 DT4GS approach. The core digital twin is deployed in the cloud and represents a comprehensive

digital replica of ship processes, components, and their real-time and predictive aspects. Simultaneously,

selected mission-critical components are simulated directly on the Edge – on-board ship compute

resources – ensuring continuous availability, minimal latency, and zero-to-low data gravity constraints. 9

Figure 2: High-level topology for a typical edge computing setup. Taken from https://open-

horizon.github.io/ .. 25

Figure 3: Data required for formulation of digital twin (from Deliverable 1.1) .. 28

Figure 4: provides a schematic of the Cloud-Edge DT4GS architecture that adapts to the required

flexibility. Starting, on the ship, an edge orchestration solution is deployed. This can deploy and manage

different applications or edge data services. Each edge data service is a containerised application

deployed on the ship infrastructure. It addresses capabilities such as storage, monitoring, prediction, and

optimisation. On-ship deployments are typically compute- and communication-constrained. Hence,

orchestration of services must consider those factors. Each ship or edge node must securely

communicate with the cloud HQ and with a container registry that may be located at HQ, public cloud, or

somewhere else. Critically, edge nodes are resilient to connectivity loss between ship and HQ. Hence, a

resilient container management solution is required that acts when feasible rather than on a purely

schedule- or event-based approach. Finally, a DevOps framework is required to manage updates and

changes to the application library deployed on the ship. ... 31

Figure 5: Open Horizon is a client/server application with a centralized server and remote edge devices

connected over a computer network. It provides targeted placement of a service (containerized

application) or collection of services to a specific registered device, or the entire collection of registered

devices under its control. It also allows for targeted updates of deployed services, again with a granularity

of a single device up to the entire collection. If a deployed service is suitable constructed. An Open

Horizon edge node is a Linux device running the Open Horizon Edge Agent software. 33

Figure 6: A data unit testing framework for DT4GS that asserts whether the time series data is withing

the prescribed bounds. The data covers a 1-year period at 5-minute intervals. While many sensor tags are

returned. For demonstration purposes, we consider a subset. The min and max thresholds are defined

based on values provided by the Living Labs. .. 40

Figure 7: Results from Great Expectations data quality testing framework. Results show that for the 9

expectations specified (as shown in Figure 6), 5 failed due to returning values outside the expected range.

Note, of course that doesn’t indicate low quality data but rather that some data values should be further

interrogated and possibly excluded from model development. .. 41

List of tables

Table 1 Glossary of acronyms and terms. .. 8

Table 2 Adherence to DT4GS Grant Agreement deliverable and work description. 10

Table 3: Summary of the advantages and disadvantages of shipping ... 15

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 8

Glossary of terms and acronyms used

Table 1 Glossary of acronyms and terms.

Acronym / Term Description

AI Artificial Intelligence

CBM Condition Based Maintenance

CI/CD Continuous Integration / Continuous Deployment

DT Digital Twin

EAM Edge Application Manager

IoT Internet of Things

KG Knowledge Graph

LL Living Lab

LLM Large Language Model

ML Machine Learning

NLP Natural Language Processing

OH Open Horizon

RHACM Red Hat Advanced Cluster Management

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 9

1 Introduction

As digitalisation in the shipping industry has been maturing over the recent years, DT adoption will be

dependent on establishing trusted and convincing DT application exemplars and ensuring that ship

operators and other industry stakeholders can set up their own DTs based on their own business models,

building their own confidential knowledge at reasonable cost. This requirement is at the heart of the

DT4GS approach as illustrated in the figure below.

Figure 1 DT4GS approach. The core digital twin is deployed in the cloud and represents a comprehensive digital replica of ship
processes, components, and their real-time and predictive aspects. Simultaneously, selected mission-critical components are

simulated directly on the Edge – on-board ship compute resources – ensuring continuous availability, minimal latency, and zero-to-
low data gravity constraints.

DT4GS will provide a virtual representation of ships and physical transport entities with a bi-directional

communication links from sensing to actuation/control, to data driven simulation and AI based decision

support. Results will be directly communicated to people who will implement necessary actions. In DT4GS

extra emphasis will be given to:

• DT applications onboard the ship utilising advanced IoT and edge computing infrastructure.

• Using labelled data or self-learning capabilities for AI/ML training to provide the ground truth for

accurate predictions (supervised learning), and where there is need to learn from experience to

provide the reward function (reinforcement learning).

• The deployment of powerful new foundation models built on the transformers architecture that are

revolutionizing many aspects of natural language processing and computer vision

• Creating a common point of reference in the digital world for shipping vessels, which different

stakeholders can access and utilise and adapt in line with their own internal business needs.

To reach its goals DT4GS is divided into 6 WPs each with different goals, tasks, and deliverables.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 10

1.1 Mapping DT4GS Outputs and Task Description

Table 2 Adherence to DT4GS Grant Agreement deliverable and work description.

DT4GS GA

Component

Title

DT4GS GA Component Outline Respective Document

Chapter(s)

Justification

DELIVERABLE

D2.8 DT4GS

Headquarters,

Edge and

Orchestration

Infrastructure

Cloud based infrastructure for services provisioning,

deployable library on vessels. Hosting and orchestration

services including tools for deployment automation.

All chapters Report considers this from two perspectives: 1)

what are the technical requirements of

shipping based on living labs and 2) how do the

different technology solutions available

address those

TASK

ST2.5.1 DT4GS
Service
provisioning at
the
headquarters
(HQ)

Development and provision of cloud-type infrastructure

and services necessary for data collection at HQ, and for

model / simulation / optimisation development and

deployment which will bring together the outputs of WP1

and WP2 tasks.

Chapters 3 & 4 These provide a detailed analysis of the living

labs and their unique requirements for each.

We then describe the HQ management hub and

the edge node deployed on the ship. The

management and orchestration services across

these are then described

ST2.5.2 DT4GS
Far edge
(vessel)
infrastructure

Define the reference architecture for DT4GS, to be

implemented in accordance with shipping industry

standards. Design the DT4GS data schema (ontology),

based on the DT LL expectations and resulting data

mapping. Establish a common understanding and

Chapter 4 Chapter 4 describes the policies for deploying

services on the edge. Importantly this doesn’t

restrict to DT4GS technologies. A key need

highlighted during the project (e.g. Advisory

Board Meeting Sept 27th 2023), was the ability

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 11

representation of DT4GS models via a metadata

Knowledge Graph (KG), which will create a common

metamodel and vocabulary for specific instantiations of

DT4GS (e.g., in the LLs). The KG thus will act as a single

source of truth for the available models, databases, and

intelligence, describing the interdependences amongst

physical and digital components (connectors), as well as

the individual state of operations for each system

component.

to include existing open-source and closed-

source models and capabilities from different

stakeholders.

The DT4GS technical architecture is agnostic to

any containerised applications and scalable via

a flexible deployment and orchestration policy

ST2.5.3 DT4GS
Hosting and
Orchestration
of services

Enable the creation and instantiation of service

deployment processes both at HQ and on-board the ship

based on the model and data blueprints stored in the OML,

including the retrieval of datasets, providing access to a

set of registered recipes through user-friendly interfaces

to set the execution parameters. Macro level composition

services will ease the deployment of the envisioned

configurations (dataset sources, execution

engines/locations, and their interactions) and applications

by users, simplifying the onboarding process.

Chapter 3 and 4 These chapters describe the creation of

deployment policies detailing the deployment

of containerised applications on Edge or Cloud.

These are agnostic to any containerised

application and the DT4GS architecture and

dataspace can be readily deployed either in

whole or in part based on the container-first

development approach adopted across the

DT4GS project.

ST2.5.4 DT4GS
Enhanced
Intelligence in
data collection,
service
provisioning
and
orchestration

AI algorithms will be researched and will be introduced to

augment the cloud and edge infrastructure, improving

responsiveness, automation, reactive and predictive

orchestration, self-healing, meeting increased capacity

demands and thereby avoiding potential service

disruptions, and improving the overall data collection,

service provisioning and orchestration processes.

Chapter 5 Chapter 5 discusses the role of AI to:

1) Streamline the creation of

orchestration policy documents at

scale.

2) Automate the creation and

deployment of AI foundation models

that enhance the DT4GS model library.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 12

1.2 Deliverable Overview and Report Structure

This deliverable describes the edge and cloud solution for the DT4GS project. In brief, it considers user

requirements, existing state of the art in distributed multicloud computing, computing in the cloud for

shipping, computing at the far edge for shipping, and AI-backed innovation to enhance digital twin

developments for shipping.

In the first chapter, we introduce edge and cloud computing and describe the motivations of each.

Further, we give an overview of why edge and cloud computing are a key value-add for shipping. Chapter

2 provides an overview of state of the art in edge computing. We interrogate several different solutions

and evaluate them in the context of the DT4GS living labs. A key consideration for shipping is the remote

locations and regions it extends to. Hence, Chapter 2 discusses the role of zero-touch solutions that can

be particularly attractive for in industries operating under spartan conditions.

Chapter 3 provides an overview of the technical architecture in the cloud or at shipping headquarters.

This chapter provides a detailed overview of the diverse use cases from the four living labs, which include

tanker, container ship, roll-on/roll-off passenger, and bulker services. It scrutinizes the unique needs and

requirements specific to different types of shipping services. It provides a high-level overview of the

technical architecture required to integrate operations on the ship (edge) with headquarter decision

making (cloud) and external services and application development (model library). Extending from this,

we provide a highly detailed description of the OpenHorizon technical architecture for shipping. This

includes considerations around service management, application placement, and scalability across 100s

or 1000s of ships.

Chapter 4 discusses the technical architecture on the edge. It details the constraints and restrictions of

operating in compute- and communication-constrained regions together with the myriad requirements

of data processing on the edge such as IoT, machine learning, and security. We detail the requirements

and specifications to enable effective deployments at scale. Chapter 4 provides a detailed description of

deploying applications (with a full description provided in the Appendices).

Chapter 5 speaks to the role of AI and AIOps to enhance development on the edge. Specific topics

considered are data quality on the edge and structures to ensure a consistent standard of data quality;

the use of AI to automate the deployment and orchestration of applications on the cloud; and the role of

AI to simplify and streamline model development for digital twin applications.

Finally, the Conclusions section summarises the deliverable and speaks to future material that will be

covered in part B of this deliverable (due M34).

1.3 DT4GS HQ-Ship interaction scenario

Recent years has seen the evolution and maturation of IoT technology from primarily a data collection

and transmission solution to devices with significant compute capabilities and the ability to deploy

workloads close to the data. In traditional IoT setups, data generated by connected devices are

transmitted to the cloud for processing and analysis. This approach worked well for certain applications

but introduced challenges like latency, network congestion, and increased reliance on always-available

cloud connectivity. As data volumes continued to expand, this challenge becomes more pressing. In

response, edge computing emerged as a viable solution to address these issues.

Edge computing minimises latency by bringing computational workloads closer to the data source and

the location where actions need to be taken – removing the distance between collecting data, processing

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 13

it, and making those results available for use in decision making. Data is generated from diverse sources

and at different scales, encompassing equipment, devices, individuals, and processes.

1.3.1 Cloud Vs Edge Computing

The primary difference between cloud computing and edge computing is the location where data

processing occurs. In cloud computing, data is processed on a central server such as Amazon EC2

instances. This is usually located far away from the source of information. Hybrid cloud is a mixed

computing environment where applications are run using a combination of computing, storage, and

services in different environments – public clouds and private clouds, including on-premises data centres

or edge locations.

Hybrid cloud computing approaches are widespread because almost no one today relies entirely on a

single public cloud. Hybrid cloud solutions offer the flexibility to seamlessly migrate and manage

workloads across diverse cloud environments, empowering organizations to tailor their infrastructure to

meet specific business requirements. By adopting hybrid cloud platforms, organizations gain the ability

to lower costs, mitigate risks, avoid vendor lock-in, and leverage existing cloud-native developer skills and

CI/CD pipelines to drive successful digital transformation initiatives.

In today's landscape, the hybrid cloud approach has become a prevalent infrastructure setup. As

organizations undergo cloud migrations, hybrid cloud implementations naturally emerge, enabling a

gradual and systematic transition of applications and data. With hybrid cloud environments, enterprises

can continue utilizing on-premises services while harnessing the advantages of public cloud providers like

AWS, Azure, and GCP, which offer flexible options for data storage and application access (Google 2023).

Edge computing extends the hybrid cloud paradigm further. It emerged to address the unique

requirements of enterprise and consumer applications. Although they possess individual traits, edge

computing and hybrid cloud can collaborate to establish a comprehensive and adaptable computing

infrastructure. A notable aspect of contemporary edge computing solutions is their adoption of cloud

native development practices specifically designed for the edge. By leveraging cloud native development

practices, applications can be built and deployed using the same skills and tools that have been honed for

developing cloud native applications in hyper-scale cloud environments or private data centres. This

allows for the seamless extension of these practices to the edge, enabling organizations to leverage their

existing expertise and resources for edge computing deployments.

Hence, aspects such as distributed computing, data processing, management, and integration, as well as

workload placement and optimisation are enabled in an accelerated and scalable manner, agnostic of

where applications are deployed.

1.3.2 Why Edge Computing in the Maritime Industry

In a recent report (Gardner, Kenney, and Chubb 2021), Inmarsat detailed that average daily data

consumption per ship nearly tripled, from 3.4 to 9.8 gigabytes between January 2020 and March 2021. In

the same report, authors suggest that the global maritime digital products and services market in 2021 is

18% bigger than previous forecasts predicted, and that growth is running three years ahead of pre-

pandemic forecasts. The pandemic was a huge driver for digitalisation of the shipping industry.

Consequently, advances are required to ensure that these datasets are being leveraged optimally for

improved efficiency and decision.

Broadly edge computing is a distributed computing paradigm that aims to circumvent obstacles related

to connectivity, latency, autonomy, and resilience. The definition of the "edge" is flexible and context

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 14

dependent. For example, in the case of a shipping company, the edge may encompass activities at docks

where shipments are loaded and unloaded, or it may include on-board processing of ship systems and

operations. In both scenarios, processing and analysis occur in near real-time, leading to data-driven

decision-making. While the company's headquarters with the main data centre may be located miles

away, the edge represents the crucial point where data is collected, processed, and managed to derive

insights, irrespective of latency challenges. In our case, we consider the ship to be the Edge Server where

compute tasks are deployed and managed at HQ. Each ship may have additional Edge Devices such as

cameras, sensors, and actuators which communicate with the Edge Server where these data are

processed, interpreted, aggregated, analysed, and communicated to the Cloud. There are however other

examples of edge computing in the maritime sector.

A prominent example is activities by Maersk who are leveraging edge computing to streamline supply

chain logistics for shipping (Rooney 2022). Recognising that supply chains are physically connected but

digitally fragmented, Maersk are leveraging edge computing, 5G networks, and IoT devices at its

terminals to elevate the efficiency, quality, and visibility of the container ships Maersk uses to transport

cargo across the oceans. Similarly, the Port of Rotterdam is leveraging edge computing and digital twin

technologies to enhance connectivity and automation between port operations and assets (Nast 2019).

On the other hand, Yara and technology company KONGSBERG have teamed up to build the world's first

autonomous and zero-emission container vessel: Yara Birkeland. Building over several years towards fully

crewless autonomy, Birkeland leverages edge computing to ensure full vessel autonomy agnostic of

connectivity, location, or environmental conditions (Bratić et al. 2019)

Edge computing is increasingly critical for shipping. Ship transport accounts for around 90% of global

trade in goods and raw materials (OECD 2023), making the efficiency and speed of large container ships

critical to the value chains and production processes of countries worldwide. However, the

environmental impact of shipping, including emissions, fuel efficiency, and noise pollution, is becoming

increasingly apparent. To address these concerns, emerging technologies like artificial intelligence (AI)

and digital twin are appealing for their potential to improve the efficiency, management, and

environmental sustainability of shipping routes.

Whilst digitalisation of the transport sector is key to unlocking efficiencies, this is currently hindered by

data silos, technological limitations, barriers of complexity, and availability of skilled personnel. The

maritime logistics industry has been described as physically connected but digitally fragmented (Kapoor

2023). DT4GS promises to enable stakeholders in shipping to actively embrace the full spectrum of Digital

Twins innovations to support smart green shipping in both the upgrade of existing ships, as well as the

building of new vessels.

Application development today is predominantly cloud-native. With the growth of public, private, and on-

prem cloud offerings, these concepts have evolved towards a multicloud ecosystem where the developer

builds their applications in the same manner regardless of whether they will be deployed in a centralized

cloud (HQ) or decentralized edge (on a ship) environment. This introduces the cloud continuum which

extends from centralized public cloud services to decentralized edge computing devices where DT4GS

solutions are deployed. At one end, ship owners and stakeholders can leverage public cloud services

provided by major cloud providers that offer massive, centralized computing power and storage

resources that can be accessed from anywhere. On the other end, edge computing enables deployment

closer to where the data is generated to provide compute at every step of the ship system. This provides

unique benefits and advantages in terms of data sovereignty, security, and privacy, resilience to outages

and connectivity constraints, innovation opportunities, flexibility to different providers, as well as

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 15

inherent autonomy that are critically important to shipping. Table 3 summarises some of the pros and

cons of cloud and edge computing.

Table 3: Summary of the advantages and disadvantages of shipping

Computing

Paradigm

Advantages Disadvantages

Cloud

Computing

Scalability: Can easily scale resources up

or down based on demand.

Cost-Effective: Reduces the need for on-

site hardware and maintenance.

Accessibility: Allows remote access to

computing resources from anywhere.

Advanced Services: Offers a wide range

of services including AI, analytics, and IoT.

Disaster Recovery: Provides robust data

backup and recovery solutions.

Latency Issues: Can experience delays

due to distance from the server.

Ongoing Costs: Subscription-based

model can be expensive over time.

Security Concerns: Potential

vulnerabilities from shared resources.

Internet Dependency: Requires a stable

internet connection for access.

Limited Customization: May not fully

meet specific operational requirements.

Edge

Computing

Reduced Latency: Processes data closer

to the source, reducing delay.

Bandwidth Savings: Limits the amount of

data that must travel to the cloud,

reducing bandwidth usage.

Improved Privacy: Data can be processed

locally, enhancing privacy and security.

Real-Time Processing: Ideal for

applications requiring immediate data

processing.

Operational Reliability: Less reliant on

central network, reducing the risk of

remote service outages.

Limited Resources: Edge devices often

have less processing power and storage.

Management Complexity: More

challenging to manage numerous edge

devices.

Security Risks: Increased number of

devices can lead to greater security

vulnerabilities.

Higher Upfront Costs: Initial setup and

deployment can be costly.

Limited Functionality: May not offer the

full range of services available in cloud

computing.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 16

2 DT4GS Cloud to Edge Architecture

There are multiple complexities inherent to ship operations and decision making. Whilst the central

complexity may be the difficulty and uncertainty involved in decision making in the marine environment,

there are several technological challenges to overcome:

- Scale: There are thousands of ships with limited or no technical expertise on board. The solutions

implemented must be self-healing and turn-key, requiring minimal intervention and maintenance.

- Heterogeneity: Each ship represents a dynamic and unique environment, making it challenging

to find a one-size-fits-all model. Solutions need to be adaptable and flexible to cater to the diverse

needs and characteristics of each vessel.

- Data Gravity: Ships and their instruments generate vast amounts of logs, events, and metric data,

often in different formats. Additionally, the sensitivity of some of this data adds another layer of

complexity. Handling and processing this data in a secure and efficient manner is crucial.

- Resource Constraints: Ships serve as the ultimate edge nodes, characterized by limited

communication, computational, and energy resources. These constraints must be considered

when designing solutions, ensuring they can operate effectively within the ship's resource

limitations.

Fundamentally, edge and cloud technologies promise a solution that seamlessly infuse AI and simulation

across the entire spectrum of shipping operations. Agnostic of connectivity or compute capabilities, it

provides a continuously available digital assistant to guide all aspects of decision and automation.

2.1 State of the Art in Edge Computing

A forecast by International Data Corporation (IDC) estimates that there will be 41.6 billion IoT devices in

2025, capable of generating 79.4 zettabytes (ZB) of data (Hojlo 2021). The latency, scalability, and

compute efficiency of edge computing provide obvious appeal to extract insight from these vast volumes

of data. However, there are also multiple other considerations driving edge adoption including security,

operational costs, resilience, and flexibility (Rathore et al. 2022).

The global edge computing industry is experiencing rapid growth, driven by advancements in

technologies such as 5G, IoT, and the Industrial Internet (Rathore et al. 2022). Edge computing entails

extending a consistent computing environment from the datacentre to physical locations proximate to

users and data. Similar to a hybrid cloud strategy that enables organizations to run workloads across their

internal datacentres and public cloud infrastructure, an edge strategy expands the reach of a cloud

environment to numerous additional locations. This approach allows for a distributed computing

infrastructure, bringing computing capabilities closer to the edge for enhanced responsiveness,

performance, and resilience.

There are three categories of edge use cases (Schabell 2022):

- The first is called enterprise edge, and it allows customers to extend application services to
remote locations. It entails a core enterprise data store located in a datacentre or as a cloud
resource.

- The second is operations edge, which focuses on analysing inputs in real time (from Internet of
Things sensors, for example) to provide immediate decisions that result in actions. For
performance reasons, this generally happens onsite. This kind of edge is a place to gather,
process, and act on data.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 17

- The third category is provider edge, which manages a network for others, as in the case of
telecommunications service providers. This type of edge focuses on creating a reliable, low-
latency network with computing environments close to mobile and fixed users.

For the maritime industry, the first two are of relevance. As the volumes of shipping data expands rapidly,

it’s clear that much of the processing that currently happens in the cloud will happen on the edge to avoid

intractable data transfer rates and to ensure data is exploited fully. Similarly, to achieve the benefits of

digitalisation and associated efficiency, edge computing is a core component to enhance operational

decision making. In the context of industry applications, edge computing involves distribution of some

application tasks to a distributed part of the operations. It can be broadly decomposed into two

categories:

- Edge Server: This typically refers to IT equipment specifically designed for computing tasks at the

edge and operating as an extension to the computation tasks performed in the cloud. It can take

the form of a half rack comprising 4 or 8 blades, or it can be an industrial PC. Essentially, it is a

piece of IT equipment dedicated to edge computing operations.

- Edge Device: An edge device is a piece of equipment built for a specific purpose, such as an

assembly machine, a turbine, or a car. While these devices were initially designed for their primary

functions, they also possess computing capacity. In fact, many devices that were traditionally

considered IoT devices now incorporate increased computational power. For instance, an

average car today is equipped with approximately 50 CPUs. These devices often run on the Linux

operating system, allowing for the deployment of software containers, and enabling edge

computing applications to be executed directly on the devices themselves.

Scalable maritime cloud and edge architecture involves distributing compute across 1000s of

heterogeneous ships distributed across the globe. Deploying workflows across both cloud and edge

resources presents several fundamental challenges for technology solutions:

- Consider the scale of the challenge at hand. With an estimated 15 billion devices in the world

today, enterprises are faced with the task of managing thousands of devices within their

operations.

- Diversity poses another significant factor to address. These devices come in various forms, each

serving a different purpose and running on different operating systems. Managing the diverse

range of devices and the specific tasks they perform can be a complex endeavour. In the case of

shipping, this can be thought of as the diversity across different geographies and regulatory

requirements, different shipping companies and their data sovereignty and process management

demands, different ship types and their variation across compute availability and digital

sophistication, and the different stakeholders of shipping across individual ships, shipping

companies, OEMs, port operations, multi-modal logistics, and regulatory bodies. Different

stakeholders require different process optimisations, and different views of ship condition,

operations, and efficiency gaps.

- Security is a critical concern when dealing with edge devices. Unlike traditional IT data centres,

these devices operate outside the confines of controlled environments. They lack the physical

barriers, uniformity, and consistency typically found in hybrid cloud environments that aid in

ensuring security. Protecting edge devices from tampering and unauthorized access becomes a

priority. This is particularly critical for shipping where unauthorized access to ship data, processes,

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 18

and operations can extend across the spectrum from a sensitive personal and commercial

information data risk to a national security risk from unauthorized control of mammoth vessels.

- Building a robust ecosystem is essential. The role of edge computing is rapidly expanding and will

have a profound impact on enterprise computing, much like how mobile technology has

influenced consumer behaviour. Establishing a comprehensive ecosystem that integrates and

supports edge devices and their functionalities will be crucial for organizations to maximize the

benefits and potential of edge computing. In the shipping industry, there are myriad open-source

and proprietary models that are key resource for the digitalisation and modernisation of shipping

operations. A prominent example is the Open Simulation Platform (Smogeli et al. 2020), which

has become a reference for simulation model development in the maritime industry. It is critical

that any digital twin solution interfaces seamlessly with existing frameworks and solutions.

- Maintenance and ongoing support present some unique challenges. Software and AI

components are complex and require period patches and updates. Software performance can

also be impacted by environmental conditions. Having a rigorous approach for software life-cycle

management and drift detection is essential to achieve optimal performance and avoid

catastrophic failure where nearby IT support personnel is not available. It is not realistic to expect

shipping operators to have ready access to system administrators. Zero-touch provisioning and

remote patching are essential to the success of digital twin solutions for shipping.

2.2 Evaluating existing edge-computing solutions

Edge computing is considered part of the cloud continuum and existing cluster management solutions

such as Kubernetes can address many of the requirements. However, aspects such as device volumes,

heterogeneity, connectivity, and availability make a dedicated management solution preferable. Several

solutions have been proposed to address the specific needs of edge computing: including Azure IoT Edge,

RedHat Advanced Cluster Management, KubeEdge, KubeStellar, and OpenHorizon.

2.2.1 Azure IoT Edge

Azure IoT Edge is a service that allows deployment of cloud intelligence directly onto local devices by

moving analytics and certain cloud functionalities to the edge. This service is designed to run on a wide

variety of devices with heterogeneous operating systems, and it helps in reducing latency, allowing for

quick local decision-making, and reducing bandwidth use by processing data locally on the edge device

itself. The core of Azure IoT Edge is to enable AI, complex event processing, and analytics closer to the

physical world where data resides, thereby optimizing the performance of the IoT ecosystem.

At its heart, Azure IoT Edge is anchored by a runtime that operates on each IoT device, managing the

deployment and execution of modules, which are container-based implementations of specific workloads

or services. These modules can be services such as Azure Stream Analytics, custom Azure Functions, or

even your own solution. IoT Edge devices connect to Azure IoT Hub, which provides a centralized way to

manage and orchestrate devices and their modules, including the ability to update them remotely. This

ensures that devices can operate effectively in offline scenarios, with state and data automatically

synchronized once connectivity is restored.

Moreover, Azure IoT Edge integrates seamlessly with various Azure services, ensuring a unified approach

to managing device identity, security, and other cloud interactions. The security is enterprise-grade,

providing end-to-end protection for both data at rest and data in motion. For developers and companies

https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge?view=iotedge-1.4

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 19

looking to implement IoT solutions with advanced on-site processing and immediate responsiveness,

Azure IoT Edge presents a robust and versatile platform.

2.2.2 Red Hat Advanced Cluster Management (RHACM)

Red Hat Advanced Cluster Management for Kubernetes provides a centralized platform for managing

Kubernetes clusters across a variety of cloud and on-premises environments. In the context of edge

computing, RHACM extends its management capabilities to edge deployments, which often involve many

clusters spread across disparate locations with limited resources and connectivity.

RHACM simplifies the complexities of running Kubernetes at the edge by offering consistent, automated

cluster creation, configuration, and application deployment. It provides the tools necessary to address

the unique challenges of edge computing, such as the need for low-latency processing, bandwidth

limitations, and the requirement for local autonomy in the event of network outages. With RHACM,

operators can manage and scale workloads on thousands of clusters with ease, enforce governance and

compliance across all environments, and automate the deployment of applications and updates with

advanced policy management and GitOps workflows.

The platform's ability to offer visibility and control over Kubernetes workloads is particularly beneficial

for edge scenarios, where maintaining performance and reliability across numerous remote locations is

crucial. By leveraging RHACM's comprehensive set of features, organizations can effectively deploy,

monitor, and govern their edge computing resources as an integrated part of their overall cloud and data

centre strategies, thus reducing the operational burden and increasing efficiency.

2.2.3 KubeEdge

KubeEdge is an open-source system for extending native containerized application orchestration

capabilities to hosts at the edge. It is built upon Kubernetes and provides core infrastructure support for

network, application deployment, and metadata synchronization between the cloud and edge. It also

supports MQTT and allows developers to author custom logic and enable resource constraint devices to

communicate at the edge.

The key components of KubeEdge are:

• CloudCore: This is the cloud side of KubeEdge which contains various components of the cloud
part of KubeEdge. It contains the modules that interact with the cloud platform, like the controller
manager, API server, etc. These components are responsible for managing the edge nodes,
ensuring that the policies and rules defined on the cloud are enforced on the edge.

• EdgeCore: is the edge side counterpart of the CloudCore. It runs on the edge nodes and handles
the workloads, synchronization of configuration, ensuring the workloads are running on the edge
node as expected. EdgeCore makes the edge node autonomous and ensures the node can still
operate in scenarios where the connectivity to the cloud is not stable.

• EdgeMesh: provides service mesh capabilities for edge devices. This allows for service discovery
and load balancing across the edge nodes, which is critical in a distributed edge environment
where devices might have to communicate with one another frequently.

• DeviceTwin: maintains the state of edge devices, so the status of the devices can be reported to
the cloud, and changes on the cloud side can be synchronized with the edge devices.

https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://kubeedge.io/

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 20

• EdgeHub: is a web socket client responsible for interacting with CloudCore to handle the
communication between the cloud and the edge. It supports MQTT, which means it can also act
as a broker for devices that want to communicate through MQTT.

• MetaManager: is the message processor between EdgeCore and EdgeHub. It's responsible for
storing and synchronizing metadata from the cloud to the edge and vice versa.

KubeEdge allows users to deploy containerized applications to edge devices and manage these

applications in a Kubernetes-like fashion while addressing the challenges posed by the edge environment.

It can support multiple edge nodes, enabling users to scale their applications across numerous devices.

With the increase in IoT devices and the need for real-time, low-latency processing, KubeEdge represents

a significant advancement in the edge computing paradigm, blending the best practices of cloud-native

computing with the unique demands of the edge.

2.2.4 KubeStellar

The KubeStellar initiative is dedicated to tackling the complexities of managing configurations across

multiple cluster setups, such as those found in edge computing, multi-cloud, and hybrid cloud scenarios.

It aims to streamline and address a multitude of factors, including organizational structure, underlying

infrastructure, platform management, delineation of duties, architectural integration, and security issues.

Furthermore, KubeStellar is designed to manage operations in clusters that experience intermittent

connectivity, ensuring that edge environments can function independently of the main infrastructure and

other edge sites when necessary.

KubeStellar, while preserving the unaltered essence of Kubernetes (eschewing forking), is tailored to

refine edge computing deployments:

• Facilitates the central deployment and orchestration of Kubernetes resources throughout an

array of clusters.

• Implements resilient strategies for managing interruptions in cluster connectivity with minimal

disruption.

• Engineered for scalable performance, the system supports both one-to-many and many-to-one

deployment models.

• Its architecture is modular, designed to maintain interoperability with a suite of prevalent

industry-standard tools.

Launched in May 2023 from the KCP-Edge initiative, KubeStellar emerges as an advanced innovation

aimed at enhancing the deployment processes within edge computing environments.

2.2.5 Open Horizon

The Linux Foundation's Open Horizon is an open-source platform aimed at facilitating the deployment

and management of containerized workloads and related services at the edge of a network. Open

Horizon is designed to simplify the orchestration of edge deployments, making it easier for organisations

to manage their applications across a multitude of edge devices and environments.

Open Horizon allows for automated deployment and updates of AI models and other workloads directly

onto edge devices, which is crucial for scenarios where latency, bandwidth, or privacy constraints

preclude the use of cloud computing resources. With its robust and scalable architecture, Open Horizon

enables users to securely manage the lifecycle of their edge workloads from a central location, while also

supporting autonomous operation at the edge. This means that, even in scenarios with intermittent

https://docs.kubestellar.io/main/
https://www.lfedge.org/projects/openhorizon/

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 21

connectivity to the central management, edge nodes can continue to function and make decisions

independently.

This technology is particularly relevant as the Internet of Things (IoT) expands, with billions of devices

generating data that need to be processed in real-time or near-real-time. Industries such as

manufacturing, retail, healthcare, and telecommunications can benefit significantly from Open Horizon's

ability to manage complex, distributed networks of IoT devices and edge servers. With its open-source

approach, Open Horizon also fosters collaboration and innovation, allowing developers and

organizations to contribute to the ecosystem and tailor solutions that meet their specific needs without

being locked into a single vendor or platform.

The commercial solution IBM Edge Application Manager (EAM) is built on top of Open Horizon. IBM EAM

includes added features for enhanced scalability, security, and management, along with an integrated

user interface for easier management of edge applications. Further, it includes professional support and

services for customers who require more sophisticated capabilities and support.

2.2.6 DT4GS Edge Solution

The imperative for integrating cloud and edge computing solutions to underpin maritime digital twin

ecosystems is evident. A survey of extant market solutions indicates that several conform partially to the

stipulated project specifications. Given the strategic priority to utilize open-source frameworks, thereby

precluding proprietary entanglement, both Azure IoT Edge and Red Hat Advanced Cluster Management

(RHACM) were precluded from consideration. Subsequent evaluation of the KubeStellar initiative

determined its developmental phase to be nascent, rendering it suboptimal for large-scale

implementation. Despite its significant potential, reservations persist regarding its integration as a

fundamental component of the project's infrastructure pending its progression to a more advanced stage

of development.

This reduced the list to KubeEdge and Open Horizon. To that end, we analysed the functional objectives

and architectural frameworks of Open Horizon (OH) and KubeEdge (KE) in greater detail. Both are

designed to facilitate the distribution and management of containerized applications across a network of

edge devices. A comparison can be done across objectives, architecture, project status, and runtime

monitoring:

Objective Alignment:

Both OH and KE share the fundamental goal of enabling automated, targeted container deployment to

individual or groups of edge devices within a fleet, obviating the need for manual intervention or direct

administrative access to each edge node.

Operational Architecture:

The operational design of both systems adheres to a hub-and-spoke architecture, where an edge agent

on the device communicates with a central hub, conducting orchestration tasks and relaying instructions

to the local Docker runtime environment.

OH's architecture is comprised of an agglomerate of distributed microservices forming a management

hub. These services are network-distributed and, contingent upon a stable network interface, are

responsible for a suite of operational capabilities including account management, service policy

enforcement, and deployment management.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 22

Conversely, KE operates as an extension of Kubernetes, rendering it intrinsically dependent on the

Kubernetes system for its management hub functionalities. The absence of Kubernetes nullifies KE's

operational capability.

Developmental Status:

Both projects are subject to continuous development as evidenced by the activity within their respective

GitHub repositories. Open Horizon exhibits a higher degree of maturity, given its role as the underpinning

technology of IBM's Edge Application Manager (IEAM), thereby asserting its production-ready status. On

the other hand, KE, while still in the incubation phase within the Cloud Native Computing Foundation, has

a robust contributor base and has been validated through production use cases, albeit on a limited scale.

Monitoring Capabilities:

A critical differential between OH and KE resides in their monitoring functionalities. OH does not

inherently provide monitoring tools for its deployed containers. It necessitates users to define key

performance indicators, establish monitoring intervals, and develop additional containerized solutions

for such surveillance tasks. Nonetheless, OH can deploy such monitoring containers.

KE offers built-in monitoring capabilities, specifically for basic CPU and memory usage statistics of the

containers it manages. This information can be accessed sporadically by system administrators or can be

incorporated into automated monitoring processes.

Conclusion:

Both Open Horizon and KubeEdge represent robust frameworks for edge computing orchestration, with

their own distinct operational paradigms and developmental trajectories. The choice between them

depends on the specific requirements of the edge computing environment, including considerations

around Kubernetes dependency, the maturity of the solution, and the monitoring requirements of the

deployment.

Considering the mission critical nature of shipping and the absolute need for resilience, we selected Open

Horizon for its greater maturity and close synergy with the enterprise solution IBM Edge Application

Manager.

2.3 Full Stack Edge Solution

Edge solutions require multifaceted capabilities, including the orchestration of heterogeneous

workloads, creation of a scalable, extensible, and robust data management pipeline, and seamless

deployment of data inference and AI on the edge. The latter consideration is especially critical as many

organisations become AI-driven enterprise and infuse generative AI capabilities across their operations

(Yusuf 2023). The requirements of workload orchestration, data operations, and AI infusion, include:

- Edge orchestration: A fundamental requirement is to enable seamless deployment of

containerised applications to multicloud and edge environments. Deploying on 1000s of nodes in

a scalable, replicable manner requires deep automation for advanced management of 1000s of

different software applications across 1000s of compute nodes distributed across the entire

footprint of an organisation’s operating remit. Solutions such as Open Horizon (“Open Horizon”

2023) enables the autonomous management of more than 10,000 edge devices simultaneously.

Core architecture considerations include:

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 23

o The provisioning of Open Horizon includes the management hub that runs in an instance

of OpenShift Container Platform installed in a data centre or headquarter facility. The

management hub is where the management of all remote edge nodes (edge devices and

edge clusters) occurs.

o Managed edge nodes can then be installed in remote on-premises locations to make

application workloads local to where critical business operations physically occur, such as

docks, ships, factories, warehouses, retail outlets, distribution centres, and more.

- Data Operations (DataOps): DT4GS Edge consist of disparate devices such as engines, propellors,

hulls, berths, shipping containers, etc., that are all generating data. Resilient edge solutions

require robust data management and organisational strategies for collecting and handling data,

ensuring compliance with data sovereignty regulations, and providing flexible data quality

solutions facilitating the training and deployment of AI models. Further, cognisant of data latency

restrictions, data processing on the edge must translate from vast volumes of raw data to

digestible subsets of high-quality, high-value features that can be used for AI model finetuning

and prediction. As an example, computer-vision based hull monitoring solutions generate large

volumes of data, while only small subsets of this data may be relevant for guiding hull cleaning

and maintenance.

- AI Operations (AIOps): AI-backed decision making will play a critical role in improving the

sustainability, safety, and efficiency of shipping. Ship captains and stakeholders can use AI to

process large data volumes and make decisions related to route selection, navigation, port arrival

and logistics, weather-enforced disruption, and mitigation. Further, many aspects can be fully

automated such as power management, HVAC system optimisation, cargo and inventory

management, predictive maintenance, crew management, and risk analytics. As AI begins to play

a central role in shipping, it is critical that 1) ships possess the compute infrastructure to fully

exploit these advantages and 2) the AI layer provides reliable inference monitoring mechanisms

to assess model performance, detect potential errors or uncertainties, and instil confidence in the

decision-making process.

2.3.1 Edge Infrastructure and compute

As edge matures, a critical concern for stakeholders is infrastructure considerations such as server

selection for different workloads, security of distributed devices, and loading necessary software onto

hardware devices to support various edge applications such as visual inspection, voice interaction, and

inference.

Compute capabilities within the shipping and logistics space is an evolving state. While container ships

may have some computing equipment for basic tasks such as monitoring and controlling ship systems,

these capabilities are generally limited in scope and processing power. The computing infrastructure on

a container ship is designed to support essential functions like engine control, navigation,

communication, and safety systems.

However, it's worth noting that with the increasing adoption of digital technologies and automation in

the shipping industry, there is a growing trend towards incorporating more advanced computing

capabilities on certain types of vessels. For example, larger and more advanced container ships may have

additional computing systems for tasks like cargo management, route optimization, and fuel efficiency

monitoring.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 24

Overall, while there may be some level of compute capability on a typical container ship, it is typically

limited and focused on specific operational requirements rather than extensive computing tasks. The bulk

of compute-intensive tasks, data processing, and analytics are more commonly performed in onshore

data centres or edge computing systems that support the shipping operations. Further, the mission-

critical nature of existing applications and risk-averse decision making, means shipping stakeholders are

often slow to provide access to onboard computer resources for deploying new applications. This makes

it critical to develop stakeholder trust but also to provide solutions tailored to the specific needs of a

shipping party across dimensions such as security, cost, scalability, flexibility, and ease of deployment.

Several companies offer edge solutions that provide integrated hardware and software for edge

computing deployments. Some examples include:

- Dell EMC Edge Gateway provides a compact and ruggedized device designed for edge computing.
It comes with off-the-shelf, pre-configured, pre-certified, ready-to-use products, for different
industries or applications (Dell 2023)

- Intel NUC Edge is a compact edge device that promises an out-of-the-box solution ideal for
running any critical applications on-premise with immediate high availability (Intel 2023).

- Microsoft Azure Stack Edge is a solution that combines hardware and software to bring AI,
analytics, and IoT capabilities to the edge. It includes an on-premises appliance that can be
deployed in disconnected or low-connectivity environments and integrates with Azure services
for seamless cloud-edge integration (Azure 2023).

When one considers compute infrastructure for shipping, it is important to consider the types of compute

capabilities that may be deployed: edge servers and edge devices (described in more detail in Section 1).

2.3.2 Edge platform and orchestration

Edge, by its very nature, generally involves 1000s of devices. Hence, concepts from the data centre do

not translate directly to the edge. Instead, it requires software capabilities to monitor and update a

limitless number of edge devices from across the world and new security technology and protocols to

keep everything safe (Hines 2020).

An edge computing platform contains many components. These include:

• Edge Management and Orchestration: This component handles the management, configuration,
and physical deployment of edge devices and placement of applications that will run on them. It
ensures efficient resource allocation, software updates, and monitoring of edge infrastructure.

• Security and Authentication: Edge computing software incorporates security measures to
protect edge devices, data, and communications. This includes authentication, encryption, access
control, and threat detection capabilities.

• Edge Gateway: The edge gateway serves as a bridge between the edge devices and the central
cloud or data centre. It provides connectivity, protocol translation, and data aggregation
capabilities.

• Containerization and Virtualization: To enable portability and ease of deployment,
containerisation of software workloads is critical. Software containers or virtual machines
encapsulate applications and their dependencies, making them easier to manage and deploy at
the edge.

Edge management and orchestration are critical components of edge computing. Edge management

refers to the management of edge devices, including device provisioning, configuration, and monitoring.

Edge orchestration refers to the deployment of network resources across an edge network by controlling

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 25

how network resources flow between devices and applications in an edge environment to produce a

more responsive and smartly optimized network.

As an example, Open Horizon deploys an orchestrator called “management hub” in an instance of

OpenShift Container Platform installed in the data centre. The management hub is responsible for

controlling the placement of containers to all remote edge nodes, both edge servers and edge devices.

Figure 2 provides an overview of an edge computing architecture. The two most critical responsibilities

of the orchestrator are the deployment and monitoring of workloads.

Figure 2: High-level topology for a typical edge computing setup. Taken from https://open-horizon.github.io/

Fundamentally, the edge deployment is based on containerisation of workloads. A Cloud Operations

team installs the management hub components. Specific applications are developed by data scientists

and domain experts and containerised, which are then published to the management hub edge library.

Administrators define the deployment policies that control where edge services are deployed.

Edge orchestrators use various monitoring techniques to ensure that edge devices are functioning

correctly and that network resources are being used efficiently. Some examples of monitoring techniques

used by edge orchestrators include:

• Device monitoring: Monitor the status of edge devices to ensure that they are functioning

correctly. This includes monitoring device health, connectivity, and performance.

• Application monitoring: Monitor the performance of applications running at the edge of the

network to ensure that they are meeting performance requirements.

Additionally, monitoring can be extended by user provided services to consider,

• Network monitoring: Monitor network traffic to ensure that network resources are being used

efficiently and that there are no bottlenecks in the network. This can also include monitoring of

network traffic for security threats and vulnerabilities.

• Data monitoring: Edge orchestrators monitor data flows between devices and applications to

ensure that data is being processed correctly and that there are no data integrity issues.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 26

These monitoring techniques help edge orchestrators to identify issues before they become critical and

to optimize network resources for better performance. In the context of shipping, it is critical to consider

“Day 0/Day 1/Day 2” of the software lifecycle:

• Day 0 activities encompass the initial definition, design, procurement and provisioning of the

hardware and software solution. For factory pre-install, this stage includes the initial installation

and testing of the hardware and software in the factory prior to shipping it to its destination.

Additional testing is also performed when the device is wired into the network at its destination

and powered up.

• Day 1 marks the actual deployment or launch of the software solution. It represents the first day

of production use or operation. On Day 1, the software is made available to users or customers,

and the system goes live. This phase involves activities such as testing, data migration, user

onboarding, and initial training. The goal of Day 1 is to successfully deploy software created during

Day 0 and transition from the development phase to the operational phase and ensure that the

software meets the required functionality and performance standards.

• Day 2 refers to the ongoing operational phase of the software after it has been deployed and is

in active use. It represents the period of maintenance, support, and continuous improvement.

During Day 2, organisations focus on tasks such as monitoring, troubleshooting, bug fixes,

performance optimization, regular updates, and feature enhancements. The emphasis is on

managing and maintaining the software to ensure its stability, reliability, security, and efficiency

throughout its lifecycle.

In the case of shipping, the vast number of deployed edges and the geographical location of each

deployment generally makes it prohibitively expensive to provide local IT support at each location to

monitor, maintain and update these deployments. Instead, edge technologies must provide a

comprehensive solution for administration, managing, monitoring, and securing an almost limitless

number of edge servers and devices.

The deployment of thousands of Edge devices means that each of those devices are potential entry points

for hackers and security breaches. There are some critical considerations to security on the edge. Some

of these include (Iyengar 2023):

• The enterprise should have the ability to check whether the edge nodes are operating properly

by comparing the current configuration of various resources against the desired state.

• The communication between an edge agent and management hub should be signed and

encrypted.

• Each container run on an edge endpoint should be verified against the official container to check

for tampering.

• Each container should be running in its own “docker” network with self-regulated (application

dependencies) connectivity between the components.

• Each edge agent should check that it is running the latest version of the container when the

endpoint is connected to a network.

• The enterprise should create a cryptographic signing key pair and have a plan to rotate them.

In the shipping industry, security plays a vital role as any unauthorized access or control over a vessel's

ecosystem can have catastrophic consequences. Ensuring robust security measures is of utmost

importance to prevent potential threats and protect the safety and integrity of maritime operations.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 27

3 DT4GS Headquarters Infrastructure

3.1 Overview of the headquarters testbeds (LLs)

The DT4GS project is focused on crafting strategies for reducing carbon emissions in the maritime sector.

This effort involves creating, experimenting with, and confirming innovations through four dynamic

testing environments (living labs), represented by EURONAV, DANAOS, BALEÀRIA, and STAR BULK, each

symbolizing a different segment of maritime transport (tankers, container ships, ferries, and bulk carriers,

respectively). Addressing the significant task of reducing the maritime industry's carbon footprint hinges

on tackling three principal aspects:

• Digital Twin (DT) technology for enhancing the operational efficiency of maritime transportation.

• DT applications for the selection and planning of carbon reduction retrofitting strategies for

vessels.

• DT-supported tools for the planning of new vessel builds targeting zero emissions by the year

2050.

Consequently, the DT4GS project demands innovative technological solutions that are versatile enough

to meet a diverse set of needs for various types of vessels. Deliverable 1.1 breaks down the potential

contributions of digital twin technologies in relation to the aforementioned aspects:

• Crafting and implementing Digital Twins for Operational Optimization:

o Optimisation of voyages. This approach aims to enhance vessel operations and boost

efficiency, predominantly through the reduction of fuel oil use, thereby lessening the

environmental impact.

o Advanced event detection for predictive maintenance. This includes: 1. reactive

maintenance through the replacement or repair of faulty parts; 2. scheduled routine

maintenance; 3. condition-driven maintenance relying on regular checks; and 4. predictive

maintenance based on continuous surveillance.

o Digital Twins for selection and preparation of decarbonization retrofitting initiatives for

ships.

• Creation of digital twins to guide the adoption of new, carbon-neutral power generation

methods.

o Digital twins modelling the processes of energy production and conversion in fuel cells,

generators, and steam systems to push the boundaries and creativity of future maritime

technology.

o Digital twins for batteries and supercapacitors, aiming to boost the prospects of vessel

electrification.

o Digital twins focused on thermal energy recovery and conversion systems to lower energy

consumption.

o Development of digital twins for eco-friendly propulsion methods, including wings, sails,

rotors, kites, and others.

• Digital Twins to enable a zero-emission 2050 Vision for New Vessel Construction:

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 28

o Utilizing accumulated operational data and experience to drive the lifecycle enhancement

of carbon-neutral ship designs, ensuring they are produced at optimal scales and reduced

costs.

o Digital twins for the operation of autonomous, environmentally friendly ships.

o Smart shipbuilding digital twins, encompassing all facets of a ship’s lifespan, such as its

design, construction, and management.

The formulation of digital twin solutions will be steered by various data inputs. The primary data will be

sourced from the vessels themselves, but additional data from office infrastructure and external internet-

based data will also be crucial. Figure 3 summarises the key datasets across three different types.

Figure 3: Data required for formulation of digital twin (from Deliverable 1.1)

Hence, requirements from a DT4GS technology perspective are contingent on the ability to handle data

from disparate sources and generate actionable insight across many aspects of ship building,

management, and operations.

3.2 Service requirements and limitations

Deliverable 2.1 provided a detailed description of the service requirements of the DT4GS living labs that

was collected from a series of workshops and user stories. This information is described in more detail in

deliverables 4.2 – 4.5 and briefly summarised here. Considering, each in turn, the use cases for the living

labs are:

1. Euronav

o Navigation management, route, and hull/propeller optimisation

o Integrated machinery performance management and remote control

o Integrated vessel energy production, distribution recovery and management

o Vessel performance improvements using Just In Time (JIT) arrivals

2. DANAOS

o Navigation management, route, and hull/propeller optimisation.

o Robotic data and 3D DT construction.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 29

o Evaluation, simulation, and optimization of the flow around the propeller, including possible
energy saving devices.

o Machinery performance metrics and management.

o Integrated energy production, distribution, recovery, and management.

o Vessel performance improvements using JIT arrivals.

3. Balearia

o Navigation management, route, and hull/propeller optimisation

o Integrated machinery performance management and remote control

o Integrated vessel energy production, distribution recovery and management

o Vessel performance improvements

4. StarBulk

o Navigation management, route, and hull/propeller optimisation

o Robotic data and 3D DT construction

o Integrated machinery performance management and remote control

o Integrated vessel energy production, distribution recovery and management

o Integrated biofouling assessment and management

The distinct LLs exhibit notable cooperative potential despite their differences in ship types. Key targets

for the living labs include navigation, asset management, energy generation, distribution, and recovery,

and the advancement of automation.

Developing a robust digital twin framework mandates the amalgamation of varied data streams and a

comprehensive library of models that can simulate the evolving dynamics of diverse vessels and establish

baseline performance indicators. This framework must also seamlessly connect with current maritime

industry models and solutions, such as the Open Simulation Platform and the Functional Mockup

Interface. Consultations with industry users have underscored several necessities for the maritime sector:

• Vessels are equipped with numerous sensors, each with unique identifiers often defined by the
OEM. To handle this data efficiently on a large scale, a universal data lexicon is essential. This could
be in the form of a reference ontology or a machine learning method that can decipher the sensor
tags' underlying meanings.

• The DT4GS solution must be compatible with existing models and frameworks. Given the intricate
nature of maritime operations, an expandable open model library must be able to engage with
both proprietary and open-source models to reflect the myriad facets of shipping.

• DT4GS should facilitate both ownership and deployment phases of models. Some users will need
to implement existing models within the DT4GS infrastructure, while others may seek out-of-the-
box solutions from other suppliers.

• It is imperative for models to accurately mirror the real-world mechanics of ship functions. A
digital twin setup should include modules for monitoring and evaluating models, ideally
integrating physics-based principles and limitations to reinforce known interdependencies.

• DT4GS models must precisely depict the standard conditions of ships to swiftly diagnose
deviations and incidents. Condition-based maintenance (CBM), which prescribes maintenance

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 30

only upon signs of deteriorating performance or imminent failure, relies on real-time condition
monitoring.

• Digital twins should be used to assess the operational implications of novel design alternatives,
such as different fuel options. This is particularly true regarding electrification, helping
shipowners assess the potential savings from electrification or hybrid engines, and informing
electrified navigation to optimise efficiencies and charging schedules

• The adaptability of digital twins is crucial; they must conform to specific vessel conditions,
regulatory standards, and internal corporate goals and policies. This involves model precision and
the management of uncertainty, ensuring that the model's accuracy is both transparent and
suited to the application's importance, with critical missions demanding greater confidence in
decision-making.

• Applications must be developed along the “write once, run anywhere” principle. This includes the
containerisation of applications to streamline development and aligning with industry tools such
as the Functional Mockup Interface.

• DTs must be adaptable to models of differing levels of complexity. From simple statistical
processing models to sophisticated 3D simulation models, a holistic DT includes models of
different scale, fidelity, and accuracy. The DT4GS framework must be amenable to the
deployment of different sized models dependent on situation, user preference, and acceptable
model uncertainties.

End-user interaction evidently shows a need for adaptable digital twin technologies tailored to meet

individual shipping needs. Responding to these needs, requires a flexible compute infrastructure that

adapts to the scale, fidelity, and speed of a given digital twin implementation. It is clear that digital twin

for green shipping is a continuum of solutions and it requires an associated continuum of compute

resources.

Figure 4 illustrates the essential capabilities and their interactions among onboard computing systems,

cloud services, and a container registry or model library. At its core, the setup includes an edge node on

each ship, a cloud headquarters (which could be public, private, or hybrid), and a container registry to

facilitate application deployments. Critical aspects to consider are the adaptability of application

deployments to the computing resources available on each ship, a robust framework for application

deployment and management capable of handling intermittent connectivity, and a secure connection

between individual nodes and the cloud.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 31

Figure 4: provides a schematic of the Cloud-Edge DT4GS architecture that adapts to the required flexibility. Starting, on the ship, an
edge orchestration solution is deployed. This can deploy and manage different applications or edge data services. Each edge data
service is a containerised application deployed on the ship infrastructure. It addresses capabilities such as storage, monitoring,
prediction, and optimisation. On-ship deployments are typically compute- and communication-constrained. Hence, orchestration of
services must consider those factors. Each ship or edge node must securely communicate with the cloud HQ and with a container
registry that may be located at HQ, public cloud, or somewhere else. Critically, edge nodes are resilient to connectivity loss between
ship and HQ. Hence, a resilient container management solution is required that acts when feasible rather than on a purely schedule-
or event-based approach. Finally, a DevOps framework is required to manage updates and changes to the application library deployed
on the ship.

3.3 Service Blueprint – Provisioned services on the headquarters

DT4GS builds applications to aid decision making in ship design, management, and operations that will

drive reductions in carbon emissions. Since companies typically have more than one type of ship – and

ships of the same class may have differing characteristics – these applications will require customization

and targeted deployment. Also, applications will be continuously iterated, refined, and updated to reflect

changing dynamics. It requires a solution that targets application deployment (and its associated

configuration) to a specific ship, a subset of ships, or perhaps all the ships in a company’s fleet.

Additionally, it is highly desirable to provide critical updates to applications when they are posted rather

than waiting for a ship to return to port. Accordingly, such a deployment system would need to operate

in a fragile network environment.

For DT4GS we leverage Open Horizon (OH) as an open-source open-architecture solution to deploy

applications across available compute resources. OH deploys an orchestrator called “management hub”

in an instance of OpenShift Container Platform installed in a data centre or on the locally managed

compute resources. The management hub is responsible for controlling the placement of containers to

all remote edge nodes, both edge servers and edge devices.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 32

Open Horizon is a client/server application with a centralized server (management hub) and remote edge

devices, connected over a computer network that may be constrained in terms of latency or availability.

It provides targeted placement of a service (containerized application) or collection of services to a

specific registered device, a subset of registered devices, or the entire collection of registered devices

under its control. It also allows for targeted updates of deployed services, again with a granularity of a

single device up to the entire collection. If a deployed service is suitably constructed, Open Horizon can

also facilitate the delivery of data (e.g., update inference models, modify configuration parameters,

security patches) to specific services. It can achieve these goals whilst operating over a fragile computer

network.

The server section of Open Horizon is composed of a collection of microservices, with the primary

components being:

• exchange-api: This acts as the primary communication point between the server and its collection
of edge devices.

• cloud sync service: is responsible for making available any data/models to edge devices

• agreement bot (agbot): is responsible for reconciling so called Open-Horizon policies and
deciding which services should be deployed to which devices. The server section also leverages
some additional microservices for data storage (postgres, mongo) and advanced usage.

In contrast to typical centralized Internet of Things (IoT) platforms and cloud-based control systems, the

edge control plane is mostly decentralized. Each role within the system has a limited scope of authority

so that each role has only the minimum level of authority that is needed to complete associated tasks. No

single authority can assert control over the entire system. A user or role cannot gain access to all nodes

in the system by compromising any single host or software component. For Open Horizon, the control

plane is implemented by three different software entities (IBM 2021):

• Horizon agents: Outnumber all the other actors in Open Horizon. An agent runs on each of the

managed edge nodes. Each agent has authority to manage only that one, single, edge node. The

agent advertises its public key in Horizon exchange and negotiates with remote agbot processes

to manage the local node's software. The agent only expects to receive communications from

the agbots that are responsible for deployment patterns within the agent's organization.

• Horizon agbots (agreement robots): Are processes that can run anywhere. By default, the

processes run automatically. Agbot instances are the second most common actors in Horizon.

Each agbot is responsible for only the deployment patterns that are assigned to that agbot.

Deployment patterns consist primarily of policies, and a software service manifest. A single agbot

instance can manage multiple deployment patterns for an organization. Deployment patterns are

published by developers in the context of an Open Horizon managed user organization. The

deployment patterns are served by agbots to Horizon agents. When an edge node is registered

with Horizon exchange, a deployment pattern for the organization is assigned to the edge node.

The agent on that edge node accepts offers only from agbots that present that specific

deployment pattern from that specific organization. The agbot is a delivery vehicle for

deployment patterns, but the deployment pattern itself must be acceptable to the policies that

are set on the edge node by the edge node owner. The deployment pattern must pass signature

validation, or the pattern is not accepted by the agent.

• Horizon exchange: Refers to a centralized, but geographically replicated and load balanced,

service that enables the distributed agents and agbots to join and negotiate agreements. Horizon

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 33

exchange also functions as a shared database of metadata for users, organizations, edge nodes,

and all published services, policies, and deployment patterns.

To maintain anonymity, the agent and agbot processes share only their public keys throughout the entire

discovery and negotiation process. All parties within Open Horizon treat each other as an untrusted entity

by default. The parties share information and collaborate only when trust is established, negotiations

between the parties are complete, and a formal agreement is established.

Figure 5: Open Horizon is a client/server application with a centralized server and remote edge devices connected over a computer
network. It provides targeted placement of a service (containerized application) or collection of services to a specific registered
device, or the entire collection of registered devices under its control. It also allows for targeted updates of deployed services, again
with a granularity of a single device up to the entire collection. If a deployed service is suitable constructed. An Open Horizon edge
node is a Linux device running the Open Horizon Edge Agent software.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 34

4 DT4GS Far Edge (Vessel) Infrastructure

4.1 Overview of the ship testbeds (LLs)

The living labs, span four distinct types of vessels: tankers, container ships, roll-on/roll-off passenger

ships, and bulk carriers. Across this diversity, there are shared factors to consider:

• Integration with IoT Devices: Modern ships are outfitted with numerous sensors. The digital twin
must be able to integrate with IoT devices to receive real-time data.

• Data Analysis and Machine Learning: Utilizing machine learning algorithms can help in predictive
maintenance and in analysing data for operational improvements.

• Regulatory Compliance: The digital twin must ensure that the ship complies with all international
maritime regulations, including those pertaining to emissions and discharge.

• Cybersecurity: As digital twins are connected systems, robust cybersecurity measures must be in
place to protect them from hacking and other cyber threats.

• Scalability and Flexibility: The solution should be scalable to adapt to various ship sizes and
flexible enough to integrate new technologies as they become available.

There are further considerations unique to the individual ship types, for example:

• Tankers carry liquid cargo, which can be volatile or environmentally hazardous. The digital twin
should include precise monitoring systems for cargo levels, temperature, pressure, and cargo
movement within the tanks due to the ship's motion.

• With the size of modern container ships, operational efficiency is critical. The digital twin can be
used to optimize routing, speed, and loading/unloading operations to minimize time spent in port.

• RoPax digital twin should model HVAC and other environmental control systems to ensure
passenger comfort.

• Bulk carriers often use ballast to maintain stability when unladen. The digital twin should model
the ballasting system and its interaction with the vessel's stability.

The different ship types also influence decisions made regarding the digital twin deployment

infrastructure. For example, tankers, with sensitive cargo, might require more immediate onboard edge

processing, while container ships might manage with a combination of both edge and cloud due to the

less sensitive nature of their cargo. The requirements for connectivity can vary greatly, with container

ships and bulkers needing less frequent updates than tankers or RoPax ships, which might need constant

monitoring for safety reasons. Different ship types may have different bandwidth needs. For instance,

passenger ships will have higher bandwidth requirements due to passenger usage, on top of operational

data transmission. Compute infrastructure on container ships and bulkers, which often follow

transoceanic routes, ideally require self-diagnostic capabilities to minimize the need for in-person

maintenance. Aspects such as transporting passengers or hazardous materials as in the case of RoPax

and tankers, respectively, may also require robust data integrity solutions to ensure regulatory

compliance.

These disparate considerations influence decision making related to the processing of digital twin

components, on-board, on-prem, or in the cloud.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 35

4.2 Far Edge Constraints

Deploying DT4GS DTs requires consideration of three components (which are described in more detail in

Deliverable 2.1:

• DT4GS data space: Generally, lack of interoperability and fragmentation of the different data

sharing platforms is a significant concern for supply and logistics operators. A Shipping Dataspace

provides the data infrastructure, specifically data connectors, for creating, managing, and

interacting with ship digital twins. External data sources may be also linked to the dataspace

provided their compliance to the adopted protocols. The main purpose of the Shipping Dataspace

is to enable information exchange between the digital twins, in a uniform and secure way,

providing them with collective knowledge.

• DT4GS knowledge graph: A Knowledge Graph (KG) is a structured representation of knowledge.

This provides a unified representation of vessel assets, as well as a semantic layer for the use and

encoding of functional metamodel concept.

• DT4GS model library: Any model properly registered in the open model library, i.e. conforming

with the framework, can be used in any vessel, if it is applicable as denoted by “model

applicability”.

An effective digital twin requires the seamless integration of these components across the cloud

continuum from the edge (ship) to the cloud (either on-prem or public). Aspects such as the data space,

knowledge graph, and model library require efficient storage, deployment, update, and management,

and seamless availability whether processing happens on the edge or in the cloud.

4.3 Testing Environment

In the domain of software engineering, the delineation between development and production

environments is a fundamental tenet for ensuring the reliability and stability of applications upon

deployment. Specifically, when considering the deployment of applications within the context of a

shipping industry – where the applications are situated on edge devices on the ship – the need for a

separate development environment becomes paramount. The development environment is a controlled

and experimental space that allows for rigorous testing, debugging, and feature development without

impacting the operational stability of the production environment. This segregation is critical, as the

production environment in such a setting must exhibit robust performance and constant availability; any

disruption could lead to significant logistical challenges, safety concerns, and financial loss. Furthermore,

the edge ship environment imposes unique constraints and requirements, such as limited connectivity,

which necessitates careful planning and simulation within the development phase to ensure seamless on-

deck operations. By maintaining this separation, developers can iterate and innovate without risk to the

active shipping operations, ultimately fostering a more efficient, secure, and reliable software life cycle.

In DT4GS, we hosted a virtual environment that allowed us to simulate different compute configurations,

representing different computational processing power, different bandwidth availability, different failure

modes, and different communication periodicity.

4.4 Service Blueprint – Deployable library on the ship

Open Horizon's effectiveness hinges on its utilization of policy documents. These documents, structured

as JSON files with key/value pairs, are interpreted by Open Horizon's 'agbot'. This setup allows nodes

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 36

(where services are deployed) to specify their own requirements, establishing Open Horizon's policy

mechanism as bidirectional. In this environment, nodes function autonomously, not merely as passive

recipients. This leads to policies offering a more nuanced level of control over the deployment of services

and models compared to patterns. When policies are active, the management hub actively seeks out

suitable nodes for service deployment and continuously monitors existing nodes to ensure they adhere

to the established policies. A node is considered 'in policy' if the policies governing the node, service, and

deployment that led to its initial service deployment are still valid, or if any changes in these policies do

not disrupt their compatibility. The adoption of such a policy-driven approach facilitates a clearer division

of responsibilities, enabling edge node owners, service developers, and business operators to define and

manage their respective policies independently.

 There are three key policy documents:

• edge node policy

• service policy

• deployment policy

The edge node policy is registered by an Edge Node when it initially joins an Open Horizon network. It

contains two required sections properties and constraints. See example:

In an edge node policy, properties define a list of name and value pairs. The arguments for these

can be any text string and are user defined. There is also a list of read-only system-added properties. These

contain information about computer resource, architecture, and other machine information. The final

parameter, constraints are a list of text encoded constraints which can be used to explicitly declare

limitations and requirements. This can be used to ensure that applications are not deployed to nodes that

do not have the requisite capabilities.

Open Horizon does not deploy naked applications to Edge Nodes. Instead, application developers

containerize their applications using a tool such as docker and push the result to a container registry.

They then register the container with Open Horizon using a service policy. A service policy contains

information such as name, version, and architecture of the application as well as descriptive details on

the service that the application provides. An example service policy is:

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 37

The final piece is the deployment policy. This contains a reference to the service to be deployed

including versioning and their priority, a list of constraints which is used to identify potential edge nodes,

and user input for the container delivered as environment variable in the container. For example,

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 38

Once the user defines and submits a deployment policy it is evaluated by the agbot. Based on the

deployment policy it determines which version of which service should be deployed to which edge node

by examining each device's node policy. The agbot then informs the exchange-api of its deliberations.

The next time an Edge Node contacts the exchange-api, it may receive notification of a new service to

run. The Edge Node then contacts the container registry directly, retrieves the container, and runs it.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 39

5 DT4GS Enhanced Intelligence in data collection, service

provisioning and orchestration

5.1 Data collection optimisation – state of the art

A central part of any software development pipeline is a DevOps framework that provides a unified

software development (Dev) and software operation (Ops) approach. It promotes a collaborative and

automated approach to build, test, and release software faster and more reliably. It emphasizes

continuous improvement, efficient workflows, and the integration of development and operations teams

to enhance the quality and speed of delivering software.

Similarly in a complex use case like digital twin for shipping a robust data quality pipeline is critical to

enhance the fidelity of data and identify anomalies. DataOps is an agile methodology focused on

improving the speed, accuracy, and quality of data analytics by integrating engineering, scientific,

analytic, and domain information to streamline the design, development, and maintenance of data

pipelines. It emphasizes automation, continuous integration and delivery, and collaboration to manage

the lifecycle of data flows and enable more efficient and effective data-driven decision-making.

Validating, documenting, and profiling data are essential practices in data management that play a crucial

role in ensuring the quality and integrity of data, which is the cornerstone of reliable analytics and

informed decision-making. Data validation involves checking data for accuracy and quality against

predefined criteria or standards, which helps in identifying and rectifying errors or inconsistencies at an

early stage. This process is vital in preventing the propagation of erroneous data through the pipeline,

which could lead to misleading analysis results, flawed business decisions, and loss of credibility.

Documenting data, on the other hand, involves keeping detailed records of data sources, structures,

transformations, and associated validations. This not only provides clarity and context to the data but

also enhances collaboration among team members, ensuring everyone has a consistent understanding

of the data's characteristics and lineage.

Each of the living labs offer comprehensive details about their data, including defined minimum and

maximum values for each sensor tag, which is instrumental in enhancing data validity and ensuring that

the data received from sensors adhere to these specified ranges. For these projects, we utilized Great

Expectations, an open-source Python library designed for data validation, documentation, and profiling,

to confirm the quality and integrity of our data. This library employs checkpoints, a method that is both

transparent and automatable, to verify if the data meets the set or calculated expectations. An example

of an expectations suite created for DT4GS is depicted in Figure 6. Here, the minimum and maximum

values were initially determined based on the information from the living labs, although they can also be

established by calculating statistical outlier boundaries.

https://docs.greatexpectations.io/docs/
https://docs.greatexpectations.io/docs/

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 40

Figure 6: A data unit testing framework for DT4GS that asserts whether the time series data is withing the prescribed bounds. The
data covers a 1-year period at 5-minute intervals. While many sensor tags are returned. For demonstration purposes, we consider a
subset. The min and max thresholds are defined based on values provided by the Living Labs.

Figure 7 presents results from one iteration of a data quality assessment. The results from the Great

Expectations pipeline, revealing that 5 out of 9 datasets failed due to values outside the expected bounds,

underscore the common challenge of dealing with imperfect data in real-world scenarios. This outcome

highlights the inherent variability and unpredictability of data, emphasizing the necessity of having robust

strategies in place for managing and intelligently filtering anomalous data. It's an opportunity to refine

our data processing and validation methods, ensuring that they are not only stringent but also flexible

enough to discern between true data quality issues and acceptable variances. Such instances reinforce

the importance of continuously adapting our data handling approaches, including refining the criteria

used for anomalies and outliers. By doing so, we can maintain the integrity and reliability of our datasets,

while accommodating the nuanced nature of real-world data. This balanced approach is key to extracting

meaningful and actionable insights from the data, even when it doesn't strictly adhere to predefined

expectations.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 41

Figure 7: Results from Great Expectations data quality testing framework. Results show that for the 9 expectations specified (as
shown in Figure 6), 5 failed due to returning values outside the expected range. Note, of course that doesn’t indicate low quality data
but rather that some data values should be further interrogated and possibly excluded from model development.

5.2 AI-assisted service provisioning and orchestration solutions

Since the DT4GS project began in May 2022, the field of AI has experienced a tremendous surge of interest

strongly influenced by the launch of ChatGPT. The field has been described as reaching its "Netscape

moment," indicating a significant breakthrough (Kahn 2023). This has led to the rapid development and

deployment of large AI models by organizations, with a focus on automating and enhancing various

aspects of their operations.

Foundation models, also known as pre-trained language models, have emerged as a fundamental

component in this AI revolution (Bommasani et al. 2021). These models serve as the building blocks for a

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 42

wide range of natural language processing (NLP) tasks. They are trained on extensive amounts of text

data from the internet and are specifically designed to comprehend and generate human-like text.

Built on transformer architectures, foundation models excel at capturing contextual relationships

between words, enabling them to generate coherent and contextually relevant responses. They serve as

the starting point for developing task-specific models, thus earning the term "foundation." While they

have gained recognition for their performance in language-related tasks, they can also be customized for

various domains beyond NLP, including computer vision, IT operations, and industry applications. For

instance, IBM Research has developed a geospatial foundation model that learns from raw satellite

imagery to create customized maps of natural disasters and environmental changes (Raghavan and Shim

2021). This pre-trained model can be fine-tuned for downstream applications like disaster response,

supply chain logistics, and agriculture.

By leveraging foundation models, developers and researchers can save significant time and resources

that would otherwise be required to build and train models from scratch. These models provide a robust

starting point with generalizable capabilities, which can be further refined and adapted to specific

applications or industries.

In the context of DT4GS, foundation models can be a central tool to address the scale and heterogeneity

of applications. This can be best addressed by considering two use cases:

1. Streamlining deployments on the edge: The key to Open Horizon's functionality is the use of

JSON policy documents. The core documents are edge node, service, and deployment policy,

detailing all the edge nodes being managed, the applications stored in the relevant container

registry, and the process to match applications to edge node, respectively. As the number of edge

nodes and applications grow, creating, updating, and managing these JSON files becomes

cumbersome. Large language models, like GPT, have the potential to significantly streamline the

process of writing these files. By understanding the syntax and semantics of configuration files,

these models can automatically generate accurate and efficient scripts based on user-provided

specifications or requirements. For instance, when deploying multiple container applications to

multiple ships with different characteristics and compute infrastructure, a user could describe the

desired configuration in natural language, and the AI model could translate this description into

a well-structured policy document. This capability not only saves time and reduces the potential

for human error but also allows for quick customization and scalability in complex deployment

environments. Language models can further assist by validating configurations against best

practices, suggesting optimizations, and ensuring compatibility with specific deployment

environments.

2. Automating AI model development: Developing digital twin capabilities for shipping requires an

extensive model library to represent the disparate processes that take place on a ship. One

requires the ability to translate the 100s of datasets coming from different IoT devices into

predictions informing on the condition, status, and implications of these observations.

Increasingly, transformer architecture are demonstrating ability to generalise across time series

data from multiple domains. Examples of this include:

o Transformer models demonstrate beyond state-of-the-art performance across multiple
timeseries applications domains (Nie et al. 2023).

o Tokenising time series as numerical strings and feeding to best-of-breed LLMs (e.g. GPT-3 and
LLaMA-2) to make next-token prediction demonstrates performance on-par with bespoke
time series models (Gruver et al. 2023).

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 43

o (Jin et al. 2023) leveraged a Prompt-as-a-Prefix approach that acts as a prefix to enrich the
input context and guide the transformation of reprogrammed time series patches.

o (Zhou et al. 2023) repurposed an existing pre-trained foundation model to various timeseries
forecasting tasks by redesigning and training the input embedding layer

o (Chang, Peng, and Chen 2023) leveraged pre-trained foundation model (LLMs) to enhance
time-series forecasting building on the growing interest in multi-modal approaches that unify
Natural Language Processing and Computer Vision.

o (Cao et al. 2023) developed a pool of prompts stored as distinct key-value pairs to leverage
related past experiences, where similar input time series tend to retrieve the same group of
prompts from the pool together with classic time series forecasting techniques to improve
prediction.

In both application scenarios, leveraging pretrained foundation models or the fundamental transformer
architecture can expedite and enhance the development of digital twins. These elements will constitute
primary areas of concentration during the latter half of the project.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 44

6 Conclusions

This deliverable describes the edge and cloud technical architecture for the DT4GS project.

Fundamentally, the technical architecture is driven by the living labs use cases and their specific

requirements. We explored the requirements across each of the living labs based on several meetings,

reports, and deliverables produced during the first 18 months of the DT4GS project.

Based on these requirements, we reviewed multiple technology solutions, including Kubernetes, Red Hat

Advanced Cluster Management, KubeEdge, Azure IoT, and Kubestellar. Based on the requirements

analysis across the four living labs, the OpenHorizon open-source solution provides closest alignment to

DT4GS objectives.

The deliverable details the technical specifications of Open Horizon, the key requirements for shipping,

the selected implementation for DT4GS, considerations to deploy DT4GS applications on the edge (ship)

and in the cloud (HQ), the process to instantiate Edge and Cloud resource, system administration and

management, orchestration of resources in the cloud, and finally orchestration and management of

resources on the Edge. We assess aspects such as usability and scalability for the project. A particular

requirement for shipping is that digital solutions are easy to install and manage, ideally with zero or

minimal expertise required at the ship facility.

A key contribution of this deliverable is the analysis of compute requirements for sophisticated digital

twin capabilities for shipping. It considers the different characteristics of the four living labs and the

requirements in terms of scalability, resilience, usability, and system admin cognisant of factors such as

typical route, operational requirements, available skills and personnel, security considerations, and

connectivity.

This deliverable focuses on the cloud and edge architecture to support digital twin technologies for

shipping. This extends across supporting the DT4GS data space, knowledge graph implementation, and

the model library. We detail the capabilities to support these components. Further, we explore the

role of AI to enhance digital twin penetration in shipping. Specifically, we focus on two aspects:

• The opportunity to leverage AI to enhance the deployment, placement, and orchestration of

applications on edge and cloud resources. This is a combination of pretrained foundation models

and natural language prompts to streamline generation of policy documents that controls the

placement of applications on the edge and cloud architecture.

• The use of pretrained foundation models to enhance the digital twin model library for shipping.

Creating foundation models with the capability to handle multiple different tasks can reduce the

total number of models required and simplify deployment of models by combining natural

language prompts with prediction tasks.

This document is the first version of the deliverable. In the second version, D2.9 (M34), we will provide

more details on AI-backed enhancements to address the specific needs and requirements of digital twin

for green shipping.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 45

References

Azure. 2023. “Azure Stack Edge | Microsoft Azure.” 2023. https://azure.microsoft.com/en-
us/products/azure-stack/edge.

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, and Emma Brunskill. 2021. “On the Opportunities
and Risks of Foundation Models.” arXiv Preprint arXiv:2108.07258.

Bratić, Karlo, Ivan Pavić, Sr\djan Vukša, and Ladislav Stazić. 2019. “A Review of Autonomous and Remotely
Controlled Ships in Maritime Sector.” Transactions on Maritime Science 8 (02): 253–65.

Cao, Defu, Furong Jia, Sercan O. Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. 2023. “TEMPO:
Prompt-Based Generative Pre-Trained Transformer for Time Series Forecasting.” arXiv.
http://arxiv.org/abs/2310.04948.

Chang, Ching, Wen-Chih Peng, and Tien-Fu Chen. 2023. “LLM4TS: Two-Stage Fine-Tuning for Time-Series
Forecasting with Pre-Trained LLMs.” arXiv. http://arxiv.org/abs/2308.08469.

Dell. 2023. “New Dell Edge Gateway 5200 | Dell Ireland.” Dell. 2023. https://www.dell.com/en-
ie/shop/gateways-embedded-computing/dell-emc-edge-gateway-5200/spd/dell-edge-gateway-
5200/emea_edgegateway5200.

Gardner, Nic, Matthew Kenney, and Nick Chubb. 2021. “A Changed World: The State of Digital
Transformation in a Post COVID-19 Maritime Industry.” Inmarsat Research Programme.
https://www.inmarsat.com/en/insights/maritime/2021/state-of-digital-transformation-post-covid-
maritime.html.

Google. 2023. “What Is a Hybrid Cloud?” Google Cloud. 2023. https://cloud.google.com/learn/what-is-
hybrid-cloud.

Gruver, Nate, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. 2023. “Large Language Models Are Zero-
Shot Time Series Forecasters.” arXiv. http://arxiv.org/abs/2310.07820.

Hines, Michael. 2020. “What Does the Future Hold for Edge Computing?” 2020. https://builtin.com/cloud-
computing/future-edge-computing.

Hojlo, Jeffrey. 2021. “Future of Industry Ecosystems: Shared Insights & Data | IDC Blog.” 2021.
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/.

IBM. 2021. “IBM Edge Application Manager.” March 2, 2021. https://www.ibm.com/docs/en/eam/4.1.
Intel. 2023. “Intel NUC Enterprise Edge Compute Edition Built with Scale Computing.” Scale Computing.

2023. https://www.scalecomputing.com/landing-pages/intel-nuc-enterprise-edge-compute-
edition.

Iyengar, Ashok. 2023. “Security at the Edge.” March 24, 2023. https://www.ibm.com/cloud/blog/security-
at-the-edge.

Jin, Ming, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, et al. 2023.
“Time-LLM: Time Series Forecasting by Reprogramming Large Language Models.” arXiv.
http://arxiv.org/abs/2310.01728.

Kahn, Jeremy. 2023. “The inside Story of ChatGPT: How OpenAI Founder Sam Altman Built the World’s
Hottest Technology with Billions from Microsoft.” Fortune. 2023.
https://fortune.com/longform/chatgpt-openai-sam-altman-microsoft/.

Kapoor Navneet. 2023. “Technology at Maersk.” 2023. https://www.maersk.com/about/technology.
Nast, Condé. 2019. “Rotterdam Is Building the Most Automated Port in the World.” Wired UK, 2019.

https://www.wired.co.uk/article/rotterdam-port-ships-automation.
Nie, Yuqi, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023. “A Time Series Is Worth

64 Words: Long-Term Forecasting with Transformers.” arXiv. http://arxiv.org/abs/2211.14730.
OECD. 2023. “Ocean Shipping and Shipbuilding - OECD.” 2023. https://www.oecd.org/ocean/topics/ocean-

shipping/.
“Open Horizon.” 2023. Open Horizon. 2023. https://open-horizon.github.io/.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 46

Raghavan, Sririam, and Christina Shim. 2021. “A New AI Model Could Help Track and Adapt to Climate
Change.” IBM Research Blog. February 9, 2021. https://research.ibm.com/blog/geospatial-models-
nasa-ai#fn-1.

Rathore, Vijay Singh, Vijeta Kumawat, B. Umamaheswari, and Priyanka Mitra. 2022. “Edge Computing:
State of Art with Current Challenges and Future Opportunities.” In Rising Threats in Expert
Applications and Solutions, edited by Vijay Singh Rathore, Subhash Chander Sharma, Joao Manuel
R.S. Tavares, Catarina Moreira, and B. Surendiran, 131–38. Lecture Notes in Networks and
Systems. Singapore: Springer Nature. https://doi.org/10.1007/978-981-19-1122-4_15.

Rooney, Paula. 2022. “Maersk Embraces Edge Computing to Revolutionise Supply Chain.” 2022.
https://www.arnnet.com.au/article/704006/maersk-embraces-edge-computing-revolutionise-
supply-chain/.

Schabell, Eric D. 2022. “5 Reference Architecture Designs for Edge Computing.” Enable Architect. Red
Hat, Inc. May 4, 2022. https://www.redhat.com/architect/edge-portfolio-architecture.

Smogeli, Øyvind Rasmussen, Kristine Bruun Ludvigsen, Levi Jamt, Bjørnar Vik, Håvard Nordahl, Lars
Tandle Kyllingstad, Kevin Koosup Yum, and Houxiang Zhang. 2020. “Open Simulation Platform–
An Open-Source Project for Maritime System Co-Simulation.” In 19th International Conference on
Computer and IT Applications in the Maritime Industries. Technische Universität Hamburg-Harburg.
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2723258.

Yusuf, Kareem. 2023. “Introducing Watsonx: The Future of AI for Business.” IBM Blog (blog). May 9, 2023.
https://www.ibm.com/blog/introducing-watsonx-the-future-of-ai-for-business/.

Zhou, Tian, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. 2023. “One Fits All: Power General Time
Series Analysis by Pretrained LM.” arXiv Preprint arXiv:2302.11939.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 47

Annex I

This section describes the install of the DT4GS cloud and edge solution for shipping. It includes:

• quickstart install of non production environment open horizon server

• quickstart install/registration of open horizon client on an edge node

• deploy a ‘hello world’ container

• deploy a long running container

• deploy a collection of containers

• update a deployed container

Quickstart, setup server

based on https://open-horizon.github.io/quick-start/

Create an ubuntu 22.04 amd64 vm, calling it mgmt.vm.com (say). No need to install docker, the
quickstart script will manage that.

• note: the “server” is a collection of containers which communicate with each other over
the network.

• note: user is a user account on the vm with sudo privileges.
ssh user@mgmt.vm.com
sudo su
curl -sSL https://raw.githubusercontent.com/open-horizon/devops/master/mgmt-hub/deploy-mgmt-hub.s
h -o ./deploy-mgmt-hub.sh

edit ./deploy-mgmt-hub.sh, changing,

• export HZN_LISTEN_IP=${HZN_LISTEN_IP:-127.0.0.1} to export HZN_LISTEN_IP=${HZN_LISTEN_IP:-
0.0.0.0}

• export MONGO_IMAGE_TAG=${MONGO_IMAGE_TAG:-latest} to export MONGO_IMAGE_TAG=4.0.6

Then,

chown user:user ./deploy-mgmt-hub.sh
chmod 755 ./deploy-mgmt-hub.sh
./deploy-mgmt-hub.sh
usermod -aG docker user

Record the final few lines of output, and exit out of the root shell back to the user shell

----------- Summary of what was done:
 1. Started Horizon management hub services: agbot, exchange, postgres DB, CSS, mongo DB, vault
 2. Created exchange resources: system org (IBM) admin user, user org (myorg) and admin user, an
d agbot
 Automatically generated these passwords/tokens:
 EXCHANGE_ROOT_PW=pFb0...
 EXCHANGE_HUB_ADMIN_PW=HZZu...
 EXCHANGE_SYSTEM_ADMIN_PW=W2bu...
 AGBOT_TOKEN=K13w...
 EXCHANGE_USER_ADMIN_PW=HCuP...
 HZN_DEVICE_TOKEN=gk1Y...
 Important: save these generated passwords/tokens in a safe place. You will not be able to que
ry them from Horizon.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 48

 3. Installed and configured the Horizon agent and CLI (hzn)
 4. Created a Horizon developer key pair
 5. Installed the Horizon examples
 6. Created and registered an edge node to run the helloworld example edge service
 7. Created a vault instance: http://0.0.0.0:8200/ui/vault/auth?with=token
 Automatically generated this key/token:
 VAULT_UNSEAL_KEY=4M4m...
 VAULT_ROOT_TOKEN=hvs....
 Important: save this generated key/token in a safe place. You will not be able to query them
from Horizon.
 8. Added the hzn auto-completion file to ~/.bashrc (but you need to source that again for it to
take effect in this shell session)

For what to do next, see: https://github.com/open-horizon/devops/blob/master/mgmt-hub/README.md#a
ll-in-1-what-next
Before running the commands in the What To Do Next section, copy/paste/run these commands in your
terminal:
 export HZN_ORG_ID=myorg
 export HZN_EXCHANGE_USER_AUTH=admin:HCuP...

Run docker ps to show what was started,

user@mgmt:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
fcf1fb17afea openhorizon/amd64_agbot:latest "/bin/sh -c /usr/hor…" 21 hours ag
o Up 20 hours (healthy) 127.0.0.1:3110->8080/tcp, 0.0.0.0:3111->8083/tcp
agbot
cf65e14383e2 openhorizon/amd64_vault:latest "entrypoint.sh server" 21 hours ag
o Up 21 hours (healthy) 0.0.0.0:8200->8200/tcp
vault
90070de59fad openhorizon/amd64_cloud-sync-service:latest "/usr/edge-sync-serv…" 21 hours ag
o Up 21 hours (healthy) 0.0.0.0:9443->8080/tcp
css-api
0c8fd9e9cdf9 openhorizon/sdo-owner-services:latest "/bin/sh -c $WORKDIR…" 21 hours ag
o Up 21 hours (healthy) 0.0.0.0:8040->8040/tcp, 0.0.0.0:8042->8042/tcp, 0.0.0.0:9008->9008/tc
p sdo-owner-services
1786e00554eb openhorizon/amd64_exchange-api:latest "/bin/sh -c '/usr/bi…" 21 hours ag
o Up 21 hours (healthy) 8083/tcp, 0.0.0.0:3090->8080/tcp
exchange-api
42ec032ffa13 postgres:13 "docker-entrypoint.s…" 21 hours ag
o Up 21 hours (healthy) 5432/tcp
postgres
228c26566df8 mongo:4.0.6 "docker-entrypoint.s…" 21 hours ag
o Up 21 hours (healthy) 27017/tcp
mongo

To interact with the open-horizon management hub,

export HZN_ORG_ID=myorg
export HZN_EXCHANGE_USER_AUTH=admin:HCuP...

hzn exchange status

Other commands,

hzn --help
hzn <subcommand> --help

exchange specific commands
hzn exchange --help

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 49

Quickstart, adding an additional edge node

Create another ubuntu 22.04 amd64 vm, calling it edge.vm.com (say). On this vm, docker, the hzn
command line client, and the hzn deamon will be installed.

install docker on edge node

install docker
ssh user@edge.vm.com
sudo su

apt-get update
apt-get upgrade

apt-get remove docker docker-engine docker.io containerd runc
apt-get install ca-certificates curl gnupg

install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | gpg --dearmor -o /etc/apt/keyrings/dock
er.gpg
chmod a+r /etc/apt/keyrings/docker.gpg

echo "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://
download.docker.com/linux/ubuntu "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | s
udo tee /etc/apt/sources.list.d/docker.list > /dev/null

apt-get update
apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-p
lugin
usermod -aG docker user

install open-horizon cli and daemon on edge node

install hzn cli and daemon (tested with version 2.30.0)
ssh user@edge.vm.com

mkdir pkg
cd pkg
curl -LO https://github.com/open-horizon/anax/releases/download/v2.30.0-1435/horizon-agent-linu
x-deb-amd64.tar.gz

tar -xf horizon-agent-linux-deb-amd64.tar.gz

sudo apt install jq
sudo dpkg -i horizon-cli_2.30.0-1435_amd64.deb
sudo dpkg -i horizon_2.30.0-1435_amd64.deb

sudo systemctl status horizon
sudo systemctl stop horizon

configure horizon daemon on edge node

edit the config file /etc/default/horizon,

HZN_EXCHANGE_URL=http://mgmt.vm.com:3090/v1
HZN_FSS_CSSURL=http://mgmt.vm.com:9443
HZN_AGBOT_URL=http://mgmt.vm.com:3111
HZN_SDO_SVC_URL=http://mgmt.vm.com:9008/api

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 50

HZN_DEVICE_ID=edgevm
ANAX_LOG_LEVEL=3

and restart,

sudo systemctl start horizon
sudo systemctl status horizon

Use the command line tool to check,

export HZN_ORG_ID=myorg
export HZN_EXCHANGE_USER_AUTH=admin:HCuP...

hzn exchange status

Remember this is running on the newly created edge node, connecting to the management hub on
mgmt.vm.com

Troubleshooting

• ensure ports 3090, 9443, 3111, 9008 are open on mgmt.vm.com

Register this edge node with the management hub. This is usually a one time operation carried out
on the edge node,

mkdir ~/hzn
cd ~/hzn
cat << EOF > node-policy.json
{
 "properties": [
 {
 "name": "edge.id",
 "value": "edgevm"
 }
],
 "constraints": []
}
EOF

hzn register --policy node-policy.json

• note: properties and constraints in the node policy document allow you to describe the
edge node or set of edge nodes.

On mgmt.vm.com, you can check for registered nodes,

export HZN_ORG_ID=myorg
export HZN_EXCHANGE_USER_AUTH=admin:HCuP...

hzn exchange node list
[
 "myorg/node1",
 "myorg/edgevm"
]

• note: myorg/node1 is an artifact of the quickstart script.

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 51

Deploying a container to an edge node - 1

To begin with, we will deploy the docker hello-world container to the edge node via open horizon.
This container simply starts, emits a message to stdout, and exits successfully. Log onto the
management node,

ssh user@mgmt.vm.com
mkdir ~/hello-world
cd ~/hello-world

Create a service.json file to describe the service you wish to deploy and publish it to the open
horizon exchange. This will download the image locally (from the docker registry) and sign the
image.

cat << EOF > service.json
{
 "org": "myorg",
 "label": "docker hello-world container",
 "url": "docker-hello-world",
 "version": "1.0.0",
 "arch": "amd64",
 "public": true,
 "sharable": "singleton",
 "requiredServices": [],
 "userInput": [],
 "deployment": {
 "services": {
 "docker-hello-world": {
 "image": "hello-world:latest"
 }
 }
 }
}

EOF

hzn exchange service publish -f service.json --pull-image

The output of the publish should resemble,

Signing service...
Pulling hello-world:latest...
latest: Pulling from library/hello-world
719385e32844: Pulling fs layer
719385e32844: Verifying Checksum
719385e32844: Download complete
719385e32844: Pull complete
Digest: sha256:88ec0acaa3ec199d3b7eaf73588f4518c25f9d34f58ce9a0df68429c5af48e8d
Status: Downloaded newer image for hello-world:latest
Using 'hello-world@sha256:88ec0acaa3ec199d3b7eaf73588f4518c25f9d34f58ce9a0df68429c5af48e8d' in 'd
eployment' field instead of 'hello-world:latest'
Creating docker-hello-world_1.0.0_amd64 in the Exchange...
Storing default.public.key with the service in the Exchange...

Create a deployment.json policy file to target which edge nodes recieve the container,

cd ~/hello-world

cat << EOF > deployment.json
{

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 52

 "label": "",
 "description": "",
 "service": {
 "name": "docker-hello-world",
 "org": "myorg",
 "arch": "amd64",
 "serviceVersions": [
 {
 "version": "1.0.0",
 "priority": {
 "priority_value": 3,
 "retries": 2,
 "retry_durations": 60
 }
 }
]
 },
 "properties": [],
 "constraints": [
 "edge.id == \"edgevm\""
],
 "userInput": []
}
EOF

hzn exchange deployment addpolicy -f deployment.json hello-world
hzn exchange deployment listpolicy

Log on the the edge node and watch for agreement,

ssh user@edge.vm.com
watch hzn agreement list

Check if the container is running on the edge,

ssh user@edge.vm.com
watch docker ps

You should see the container start, run for a few moments, and then exit. Once open-horizon
identifies that the container is no longer running (and thus the deployment policy is not satisfied),
the container is restarted.

To remove the deployment from the exchange,

hzn exchange deployment removepolicy hello-world

Deploying a container to an edge node

• note: this example requires access to a remote docker registory

Other than showing how to deploy a container and that open horizon restarts a container that
terminates, the hello-world container is of little use. This example will deploy a mqtt client on the
edge node which transmits data to a mqtt broker. If you do not have a mqtt broker, a container
with one can be started on the mgmt.vm.com machine, as follows,

ssh user@mgmt.vm.com
cat << EOF > ./mosquitto.conf
listener 1883 0.0.0.0
allow_anonymous true
EOF

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 53

docker run --rm --name mosquitto -v /home/user/mosquitto.conf:/mosquitto/config/mosquitto.con
f -p 1883:1883 eclipse-mosquitto:latest

On mgmt.vm.com, you can subscribe to this broker with mosquitto_sub -v -h mgmt.vm.com -t '#' (to
install client if not present: sudo apt install mosquitto-clients)

Create an mqtt client service and deploy it to the edge node.

ssh user@mgmt.vm.com
mkdir ~/mqtt-client
cd ~/mqtt-client

create Dockerfile
cat << EOF > Dockerfile
FROM debian:stable-slim

RUN apt-get update && apt-get upgrade -y && apt-get install -y mosquitto-clients

COPY run.sh /run.sh

ENTRYPOINT ["/run.sh"]
EOF

create shell script which runs in container
cat << EOF > run.sh
#!/bin/bash

export MHOST=${MHOST:-127.0.0.1}
export TOPIC=${TOPIC:-fallback}
export MSG=${MSG:-message}

while [1]
do
 STAMP=$(date)
 echo "001 ${MHOST} ${TOPIC} ${MSG}"
 mosquitto_pub -h ${MHOST} -t ${TOPIC} -m "001 ${STAMP} ${MSG}"

 sleep 5
done
EOF

chmod 755 run.sh

docker build -t mqttpub:001 .
docker tag mqttpub:001 remote-registry:port/mqttpub:001
docker push remote-registry:port/mqttpub:001

Create a service description for open horizon,

cd ~/mqtt-client

replace REMOTE-REGISTRY:PORT
cat << EOF > service.json
{
 "org": "myorg",
 "label": "publish mqtt message to broker",
 "url": "publish-mqtt",
 "version": "1.0.0",
 "arch": "amd64",
 "public": true,

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 54

 "sharable": "singleton",
 "requiredServices": [],
 "userInput": [],
 "deployment": {
 "services": {
 "publish-mqtt": {
 "image": "REMOTE-REGISTRY:PORT/mqttpub:001"
 }
 }
 }
}
EOF

hzn exchange service publish -f service.json --pull-image

Create a deployment policy for this service,

cd ~/mqtt-client

cat << EOF > deployment.json
{
 "label": "",
 "description": "",
 "service": {
 "name": "publish-mqtt",
 "org": "myorg",
 "arch": "amd64",
 "serviceVersions": [
 {
 "version": "1.0.0",
 "priority": {
 "priority_value": 3,
 "retries": 2,
 "retry_durations": 60
 }
 }
]
 },
 "properties": [],
 "constraints": [
 "edge.id == \"edgevm\""
],
 "userInput": [
 {
 "serviceOrgid": "myorg",
 "serviceUrl": "publish-mqtt",
 "serviceVersionRange": "1.0.0",
 "inputs": [
 {
 "name": "TOPIC",
 "value": "edgevm"
 },
 {
 "name": "MSG",
 "value": "new message"
 },
 {
 "name": "MHOST",
 "value": "mgmt.vm.com"
 }
]
 }
]
}
EOF

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 55

hzn exchange deployment addpolicy -f deployment.json mpub
hzn exchange deployment listpolicy

Log on to the edge node and watch for agreement,

ssh user@edge.vm.com
watch hzn agreement list

Check if the container is running on the edge,

ssh user@edge.vm.com
watch docker ps

Check the mqtt broker for delivered messages

mosquitto_sub -h mgmt.vm.com -t '#'

To cancel the deployment,

hzn exchange deployment removepolicy mpub

Deploying multiple dependent containers to an edge node

As a simple example we will deploy three containers, source, node, and sink to an edge node. source
sends a message to node, which appends data to the message before forwarding it to sink, which
tranmits the message it receives to a remote mqtt broker. This will require the creation of the
following files (in directory ~/pipeline),

source.df # Dockerfile
source.json # service file
source.sh # simple application to emit data

node.df # Dockerfile
node.json # service file
node.sh # simple application to update and relay data

sink.df # DockerFile
sink.json # service file
sink.sh # simple application to recieve and relay data to a mqtt broker

deployment.json # deployment policy file

• note: if the services require network access to one another, they cannot simple be
deployed as open horizon creates an unique isolated docker network for each service.
Therefore in order to allow communication between services, dependencies
(requiredServices) must be defined in each service file

The contents of the source related files are,

==> source.df <==
FROM debian:stable-slim

RUN apt-get update && apt-get upgrade -y && apt-get install -y netcat-openbsd

COPY source.sh /source.sh

ENTRYPOINT ["/source.sh"]

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 56

==> source.json <==
{
 "org": "myorg",
 "label": "pipeline: source",
 "url": "source",
 "version": "0.0.1",
 "arch": "amd64",
 "public": true,
 "sharable": "singleton",
 "requiredServices": [],
 "userInput": [],
 "deployment": {
 "services": {
 "pipeline-source": {
 "image": "REMOTE-REGISTRY:PORT/source:latest"
 }
 }
 }
}

==> source.sh <==
#!/bin/bash

export ADDRESS=${ADDRESS:-127.0.0.1}

while [1]
do
 msg=$(date)
 echo $msg
 echo $msg | netcat -N ${ADDRESS} 1234
 sleep 5
done

The contents of the node related files are,

==> node.df <==
FROM debian:stable-slim

RUN apt-get update && apt-get upgrade -y && apt-get install -y netcat-openbsd

COPY node.sh /node.sh

ENTRYPOINT ["/node.sh"]

==> node.json <==
{
 "org": "myorg",
 "label": "pipeline: node",
 "url": "node",
 "version": "0.0.1",
 "arch": "amd64",
 "public": true,
 "sharable": "singleton",
 "requiredServices": [
 {
 "org": "myorg",
 "url": "source",
 "version": "0.0.1",
 "arch": "amd64"
 }
],
 "userInput": [],

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 57

 "deployment": {
 "services": {
 "pipeline-node": {
 "image": "REMOTE-REGISTRY:PORT/node:latest"
 }
 }
 }
}

==> node.sh <==
#!/bin/bash

export ADDRESS=${ADDRESS:-127.0.0.1}

while [1]
do
 msg=$(nc -l -p 1234)
 echo $msg

 echo "$msg + node" | netcat -N ${ADDRESS} 1235
done

The contents of the sink related files are,

==> sink.df <==
FROM debian:stable-slim

RUN apt-get update && apt-get upgrade -y && apt-get install -y mosquitto-clients netcat-o
penbsd

COPY sink.sh /sink.sh

ENTRYPOINT ["/sink.sh"]

==> sink.json <==
{
 "org": "myorg",
 "label": "pipeline: sink",
 "url": "sink",
 "version": "0.0.1",
 "arch": "amd64",
 "public": true,
 "sharable": "singleton",
 "requiredServices": [
 {
 "org": "myorg",
 "url": "node",
 "version": "0.0.1",
 "arch": "amd64"
 }
],
 "userInput": [],
 "deployment": {
 "services": {
 "pipeline-sink": {
 "image": "REMOTE-REGISTRY:PORT/sink:latest"
 }
 }
 }
}

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 58

==> sink.sh <==
#!/bin/bash

export MHOST=${MHOST:-127.0.0.1}
export TOPIC=${TOPIC:-fallback}

while [1]
do
 msg=$(nc -l -p 1235)
 echo $msg

 mosquitto_pub -h ${MHOST} -t ${TOPIC} -m "001 ${msg}"
done

And finally the contents of deployment.json,

{
 "label": "",
 "description": "",
 "service": {
 "name": "sink",
 "org": "myorg",
 "arch": "amd64",
 "serviceVersions": [
 {
 "version": "0.0.1",
 "priority": {
 "priority_value": 3,
 "retries": 2,
 "retry_durations": 60
 }
 }
]
 },
 "properties": [],
 "constraints": [
 "edge.id == \"edgevm\""
],
 "userInput": [
 {
 "serviceOrgid": "myorg",
 "serviceUrl": "source",
 "serviceVersionRange": "0.0.1",
 "inputs": [
 {
 "name": "ADDRESS",
 "value": "pipeline-node"
 }
]
 },
 {
 "serviceOrgid": "myorg",
 "serviceUrl": "node",
 "serviceVersionRange": "0.0.1",
 "inputs": [
 {
 "name": "ADDRESS",
 "value": "pipeline-sink"
 }
]
 },
 {

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 59

 "serviceOrgid": "myorg",
 "serviceUrl": "sink",
 "serviceVersionRange": "0.0.1",
 "inputs": [
 {
 "name": "TOPIC",
 "value": "edgevm"
 },
 {
 "name": "MHOST",
 "value": "mgmt.vm.com"
 }
]
 }
]
}

Deployment is as before,

• build, tag, and push containers,

• publish services to exchange

• add deployment policy
ssh user@mgmt.vm.com

export HZN_ORG_ID=myorg
export HZN_EXCHANGE_USER_AUTH=admin:HCuP...

cd ~/pipeline

docker build -f source.df -t source:latest .
docker build -f node.df -t node:latest .
docker build -f sink.df -t sink:latest .

docker tag source:latest REMOTE-REGISTRY:PORT/source:latest
docker push REMOTE-REGISTRY:PORT/source:latest

docker tag node:latest REMOTE-REGISTRY:PORT/node:latest
docker push REMOTE-REGISTRY:PORT/node:latest

docker tag sink:latest REMOTE-REGISTRY:PORT/sink:latest
docker push REMOTE-REGISTRY:PORT/sink:latest

hzn exchange service publish -f source.json --pull-image
hzn exchange service publish -f node.json --pull-image
hzn exchange service publish -f sink.json --pull-image

hzn exchange deployment addpolicy -f deployment.json pipeline
hzn exchange deployment listpolicy

Log on to the edge node and watch for agreement,

ssh user@edge.vm.com
watch hzn agreement list

Check if the container is running on the edge,

ssh user@edge.vm.com
watch docker ps

also check docker networks created
docker network ls

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 60

Check the mqtt broker for delivered messages

mosquitto_sub -h mgmt.vm.com -t '#'

To cancel the deployment,

hzn exchange deployment removepolicy pipeline

Updating a deployed container

Returning to the mqtt example, if it is not still deployed, redeploy it.

ssh user@mgmt.vm.com
cd ~/mqtt-client

hzn exchange deployment addpolicy -f deployment.json mqtt

To update this container, edit run.sh changing 001 to 002,

#!/bin/bash

export MHOST=${MHOST:-127.0.0.1}
export TOPIC=${TOPIC:-fallback}
export MSG=${MSG:-message}

while [1]
do
 STAMP=$(date)
 echo "002 ${MHOST} ${TOPIC} ${MSG}"
 mosquitto_pub -h ${MHOST} -t ${TOPIC} -m "002 ${STAMP} ${MSG}"

 sleep 5
done

Build, tag, and push container,

docker build -t mqttpub:002 .
docker tag mqttpub:002 REMOTE-REGISTRY:PORT/mqttpub:002
docker push REMOTE-REGISTRY:PORT/mqttpub:002

Update version and docker image url in service.json,

{
 "org": "myorg",
 "label": "publish mqtt message to broker",
 "url": "publish-mqtt",
 "version": "2.0.0",
 "arch": "amd64",
 "public": true,
 "sharable": "singleton",
 "requiredServices": [],
 "userInput": [],
 "deployment": {
 "services": {
 "publish-mqtt": {
 "image": "REMOTE-REGISTRY:PORT/mqttpub:002"
 }
 }
 }
}

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 61

Publish service,

hzn exchange service publish -f service.json --pull-image

Update deployment.json, appending to serviceVersions and userInput. The
serviceVersions.priority.priority_value determines which container is started (lower value ==
more important). Failure to start the container will result in fallback to the next priority_value.

{
 "label": "",
 "description": "",
 "service": {
 "name": "publish-mqtt",
 "org": "myorg",
 "arch": "amd64",
 "serviceVersions": [
 {
 "version": "2.0.0",
 "priority": {
 "priority_value": 1,
 "retries": 2,
 "retry_durations": 60
 }
 },
 {
 "version": "1.0.0",
 "priority": {
 "priority_value": 3,
 "retries": 2,
 "retry_durations": 60
 }
 }
]
 },
 "properties": [],
 "constraints": [
 "edge.id == \"edgevm\""
],
 "userInput": [
 {
 "serviceOrgid": "myorg",
 "serviceUrl": "publish-mqtt",
 "serviceVersionRange": "2.0.0",
 "inputs": [
 {
 "name": "TOPIC",
 "value": "edgeVM"
 },
 {
 "name": "MSG",
 "value": "new message"
 },
 {
 "name": "MHOST",
 "value": "mgmt.vm.com"
 }
]
 },
 {
 "serviceOrgid": "myorg",
 "serviceUrl": "publish-mqtt",
 "serviceVersionRange": "1.0.0",
 "inputs": [
 {

Deliverable D2.8 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 62

 "name": "TOPIC",
 "value": "edgevm"
 },
 {
 "name": "MSG",
 "value": "new message"
 },
 {
 "name": "MHOST",
 "value": "mgmt.vm.com"
 }
]
 }
]
}

Deploy,

hzn exchange deployment addpolicy -f deployment.json mqtt
hzn exchange deployment listpolicy

Log on to the edge node and watch for agreement,

ssh user@edge.vm.com
watch hzn agreement list

Check if the container is running on the edge,

ssh user@edge.vm.com
watch docker ps

Check the mqtt broker for updated delivered messages (edgevm 001 TIMESTAMP -> edgeVM 002
TIMESTAMP)

mosquitto_sub -h mgmt.vm.com -t '#'

To cancel the deployment,

hzn exchange deployment removepolicy mqtt

