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Abstract: Trajectory data holds pivotal importance in the shipping industry and transcend their
significance in various domains, including transportation, health care, tourism, surveillance, and
security. In the maritime domain, improved predictions for estimated time of arrival (ETA) and
optimal recommendations for alternate routes when the weather conditions deem it necessary can
lead to lower costs, reduced emissions, and an increase in the overall efficiency of the industry. To this
end, a methodology that yields optimal route recommendations for vessels is presented and evaluated
in comparison with real-world vessel trajectories. The proposed approach utilizes historical vessel
tracking data to extract maritime traffic patterns and implements an A* search algorithm on top of
these patterns. The experimental results demonstrate that the proposed approach can lead to shorter
vessel routes compared to another state-of-the-art routing methodology, resulting in cost savings
for the maritime industry. This research not only enhances maritime routing but also demonstrates
the broader applicability of trajectory mining, offering insights and solutions for diverse industries
reliant on trajectory data.

Keywords: AIS; weather routing optimization; path planning; trajectory mining; dynamic programming

1. Introduction

Trajectory mining (TM) is a data mining technique used to extract knowledge from
trajectory data, which refer to the sequence of spatial locations visited by an object over
time [1]. Trajectory mining has been widely applied in various fields, including transporta-
tion, health care, tourism, surveillance, and security. In health care, it has been applied
to study patient movements and predict disease outbreaks [2]. In tourism, it has been
applied to understanding tourist movements to enhance tourist experiences [3,4] and
the planning of infrastructure development [5]. In surveillance and security, it has been
used to analyze the movement of people and vehicles to detect suspicious activities [6,7].
Above all, in transportation, trajectory mining has been employed to find the most efficient
routes for vehicles based on historical trajectory data [8,9], to analyze and predict traffic
congestion patterns to optimize traffic flow and reduce congestion [10], and to improve
transportation systems overall.

Trajectory mining has emerged as a transformative field in data analysis [11], offering
profound advantages across diverse industries by harnessing the power of movement data.
In an era marked by an unprecedented proliferation of location-aware devices and systems,
trajectory mining stands as a potent tool for extracting valuable insights from the patterns
and behaviors of objects or entities as they move through time and space [12]. The long list
of applications [13] showcases the ability of TM to drive data-informed decision making,
reduce costs, and enhance safety and sustainability in an array of domains. As the world
continues to generate vast volumes of movement data, trajectory mining remains a vital
tool for unlocking actionable insights and shaping a more efficient, interconnected future.
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The extraction of patterns from trajectory data has gained paramount importance in
the maritime sector, revolutionizing the way vessels navigate the world’s oceans. At the
heart of this transformation is the Automatic Identification System (AIS), which has en-
abled the collection of extensive trajectory data from ships. This real-time tracking system
mandated by maritime regulations has ushered in an era of unprecedented transparency
and safety at sea. AIS data provide a comprehensive record of vessel movements, includ-
ing their positions, speed, and course overground, thereby enhancing navigation, safety,
and efficiency. With AIS-derived trajectory data, shipping companies can optimize routes
to minimize fuel consumption and reduce environmental impact, resulting in substantial
cost savings and lower emissions. Furthermore, these data are instrumental in maritime
security, allowing authorities to monitor vessel movements and detect any suspicious
or unauthorized activities, thereby safeguarding national waters [14–16]. In addition to
safety and efficiency, trajectory mining with AIS data holds immense promise for future
advancements in maritime logistics, port management, and global trade. By analyzing
historical and real-time trajectories, stakeholders can make informed decisions, improve
port operations, and streamline the flow of goods worldwide. In summary, the availability
of AIS-generated trajectory data has catapulted trajectory mining into a pivotal role within
the maritime sector [17]. It not only ensures safer and more efficient sea voyages but also
underpins global commerce, environmental stewardship, and national security on the
high seas.

A prominent limitation in existing research on trajectory mining is the lack of a mech-
anism designed to effectively balance the tradeoff between exploration and exploitation
of acquired data. Many approaches outlined in relevant literature tend to prioritize the
exploitation of abundant data associated with historical routes at the expense of exploration.
Consequently, this approach results in a biased and oversimplified strategy that merely
“queries” the identified routes rather than integrating them to construct a comprehensive
network. This ultimately yields a less informative scheme. In this direction, the proposed
approach takes advantage of AIS data collected by multiple vessels over an extended time
period, encompassing various seasons and weather conditions. Leveraging this rich reposi-
tory of naval trajectory information, we build on a network abstraction that represents the
intricate web of paths traversed by vessels. This network not only captures the historical
behavior of vessels but also accounts for their responses to diverse environmental factors.
To enhance the efficacy of route recommendations, we integrate this network information
with real-time weather condition data, ensuring that the selected trajectories are optimized
for prevailing environmental conditions. By employing sophisticated shortest-path al-
gorithms, our approach identifies and recommends the most efficient routes for vessels,
ultimately improving navigation, reducing fuel consumption, and enhancing overall mar-
itime operations. This innovative fusion of historical naval path data, real-time weather
insights, and advanced optimization techniques constitutes a powerful and adaptive ap-
proach to trajectory-based route planning in the maritime industry. This work presents the
initial potential of an AIS-based routing optimization approach by extracting the shortest
path between two waypoints and benchmarking the acquired results with readily available
open-source libraries for navigation management that have been well-established within
the maritime domain.

The contributions of the current work can be summarized as follows:

• The exploitability of AIS data in path planning and weather routing applications is
limited. Therefore, this research builds on the exploitation of past vessel trajectories
derived from AIS data and develops a fine-tuned grid of possible vessel routes.

• The development of an A* search algorithm for optimal path planning based on the
historical vessel routes.

Section 2 provides an overview of research on trajectory mining in various fields and
emphasizes on the works in the maritime domain and the problems they tackle. Section 3
provides an overview of the available data that were employed to build the network ab-
straction of the vessel paths. Section 4 describes the methodological approach that we
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propose for finding optimal paths using shortest-path principles based on the network
information and introduces a grid-based approach that solves several inconsistencies and
further improves the performance of our approach. Finally, Section 6 briefly discusses the
main findings of our work and concludes the paper with suggestions for future research di-
rections.

2. Related Work

The application of trajectory mining has its origins in the analysis of video data, aiming
at the tracking of objects’ movement through the spatiotemporal analysis of their position
in consecutive video frames [18] (e.g., ball movement in soccer videos). With the advent
of GPS and the availability of the respective position data, applications quickly moved
towards the modeling of the movement of real-world objects [19], such as persons or
animals [20,21], vehicles [22], vessels [23], etc. Various data mining techniques have been
applied to trajectory data, depending on the problem and the information carried by the
trajectories, ranging from clustering and classification to anomaly detection and trajectory
prediction. Related works are presented below, organized by technique and application
domain, and their main requirements and results are discussed.

Classification From the early work on TraClass [21] that introduced the concept of
trajectory partitioning, then applied clustering to trajectory segments to the more recent
works on movelets [24], the process is almost always similar: (i) partition the trajectory
into subtrajectories of either equal length or duration or based on changes in the trajectory
properties, (ii) define a similarity or distance measure for comparison of subtrajectories
that are considered the features that describe each trajectory, and (iii) expand this measure
to calculate the similarity between a prototype trajectory (i.e., class representative) and all
other trajectories. In a similar line, the authors of [25] proposed a shapelet-based [26] classi-
fication framework for the detection of specific search-and-rescue maneuvers performed by
vessels. They employed a genetic algorithm to find the best shapelets to use as features and
managed to significantly reduce the complexity of their approach without a significant loss
in terms of accuracy. More recent approaches attempt to classify the trajectory as a whole,
either extracting features from the distributions of speed, longitude, latitude, and course in
the whole trajectory [27] or by examining the trajectories as images [28,29] and applying
popular classification algorithms to them (from random forests to CNNs). In this line, the
authors of [30] employed a segmentation and clustering approach to identify different types
of travel patterns, such as regular commuting, leisure travel, and airport transportation
based on data on ride-hailing passengers.

Clustering techniques are the most popular in trajectory mining since they allow for
the creation of meaningful groups of trajectories or trajectory segments that share the same
location, shape, or movement characteristics. TraClus [31], the first trajectory clustering
algorithm, is based on a partition-and-group approach and a composite distance function
for trajectory segments and combines the perpendicular, parallel, and angle distances.
DBSCAN is a basic algorithm that was extended to capture the composite distance func-
tion. In [32], DBSCAN was incorporated into a holistic, modular framework (TREAD)
that identifies vessel traffic patterns in real time to realize an informed decision-making
procedure through causal analysis and pattern recognition. The authors of [33] were able to
associate vessel types (containers, Ro-Ro, etc.) with route segments by utilizing geometry-
based fuzzy membership functions. More recently, the authors of [34] presented another
extended version of DBSCAN that, apart from the locational and directional features of the
moving object, also considers its speed in an attempt to create clusters in which the objects
move close to each other, almost in parallel, and with similar speeds. The authors of [35]
conducted a comprehensive survey of trajectory clustering techniques, including spatial
and time-dependent clustering, partition and group clustering, and semantic trajectory
clustering. They also summarized the main distance and similarity measures that are used
by the algorithms.
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Outlier and anomaly detection techniques usually rely on clustering or classification
in the first step in order to find the trajectories that lack a corresponding match within
the dataset. The applications vary from object tracing to climate monitoring and road
network management, and apart from classification and clustering, statistic-based and
density-based techniques are also employed to find samples that diverge from the normal
distribution [36,37]. Once again, a representation of the trajectory or subtrajectory in the
first step and a distance or similarity measure in the second step are needed to group
similar items together and detect outliers. The anomaly detection framework proposed
in [38] provides a different approach that combines a maritime trajectory model as a basis
comprising moving objects’ trajectory streams with a grid partitioning of the space to
discover infrequent regions that contain outlying trajectory segments or segments that
diverge from the main streams. In [39], a complex event recognition framework was
introduced, utilizing event calculus for real-time outlier detection in AIS data streams
corresponding to vessel trajectories.

Graph-based techniques have frequently been employed to trajectory data, especially
in the transportation domain. Authors usually represent the movement trends of the
monitored entities on a graph that contains POIs, entities (i.e., persons, vehicles, or vessels)
as nodes, and their connectivity across spatiotemporal and semantic dimensions as edges
in order to create a network or graph abstraction. Then they perform queries that extract
frequent patterns from the graph. In [40], the authors exploited historical data of vessel
trajectories in order to understand maritime routes and traffic. In the same context, the
authors of [41] presented a methodology for extracting the navigation network of an area
from AIS data. The nodes in the final graph represent points of interest with respect to
the vessel trajectories, such as ports or points of major change in speed and direction
(waypoints), and the edges are the result of the clustering of trajectory segments from
multiple vessels. The segments share similar location, direction, and speed properties. In a
slightly different approach, the authors of [42] employed a graph-based spatiotemporal
convolutional network trained on past vehicle trajectories to predict vehicle trajectories
in an autonomous driving scenario. The vehicles were considered the nodes of the graph,
and their past trajectories were encoded as node features. The graph was fully connected,
but the edges’ weights model the effect that each vehicle has on surrounding vehicles.
The proposed approach allows for the simultaneous prediction of the future location of all
vehicles at once.

Trajectory prediction is one of the most prominent tasks, with many applications in
tourism, transportation, traffic management, etc. The comprehensive survey of human
trajectory prediction reported in [43], the surveys of machine learning approaches for
vehicle trajectory prediction presented in [44,45], and the recent survey of vessel trajec-
tory prediction techniques [46,47] all agree that either physics- (turn rate, velocity, and
acceleration) or statistics-based methods (Kalman filters and Monte Carlo methods) can be
employed to predict the future position of a moving object, and they propose the use of
deep learning techniques to implicitly capture the complex dynamics of motion, especially
in the context of other moving objects, in order to predict the evolution of a trajectory.
In [48], the authors proposed a transformer-based context-aware network that captures
POI visiting sequences from trajectories, enriches them with semantic and social context,
and predicts the next POI to be visited in an ongoing trajectory. Similarly, the authors
of [49] proposed a spatiotemporal LSTM network that processes semantic trajectories from
Foursquare and predicts the future locations of persons moving around a city. These works
go beyond the traditional spatiotemporal representation of trajectories and capitalize on
multiaspect semantic trajectories [50], which, in turn, creates new research opportunities in
the trajectory mining domain.

All the techniques and approaches presented so far cover a wide range of applications
of trajectory mining in various domains. In the maritime sector, trajectory mining tech-
niques have been adopted recently to analyze vessel movements and improve vessel safety
and efficiency. In [51], TM was used to analyze vessel movements in a port. The study
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used trajectory clustering to identify vessel behavior patterns, such as berthing, departure,
and maneuvering. The results can be used to optimize port management and improve ves-
sel safety. Another study [52] involved the application of trajectory mining to analyze the
movement patterns of fishing vessels. The study used trajectory segmentation and cluster-
ing to identify different types of fishing behavior, such as trolling, drifting, and anchoring.
The results can be used to improve fishing management and reduce overfishing.

The use of the Automatic Identification System (AIS) in vessels has created an enor-
mous amount of trajectory data that can be employed in a multitude of ways. In the
following section, we present a novel methodological approach that utilizes knowledge
from historical trajectory data in order to support a routing optimization algorithm for the
maritime sector. Preliminary experimental results demonstrate that AIS routing lowers
the overall computational cost of traditional brute-force graph- and grid-based methods
and ideally exploits the acquired historical routes by employing a tailor-made sea grid of
alternative waypoints.

3. Data Overview and Processing

Raw AIS data are acquired by transmitters installed on board, synchronizing with the
closest AIS station at fixed intervals, where they can be aggregated and stored in streams
via a TCP/IP protocol. They consist of the vessel coordinates at a specific time, the vessel
speed that corresponds to the overground speed (GPS speed), and the vessel overground
heading. The specific dataset used in this work corresponds to approximately ≈104 routes
(round-trip voyages) of cargo ships (container ships) in the Mediterranean sea. A limited
version of the dataset (trajectories) is depicted in Figure 1 for visualization purposes.

Figure 1. Acquired AIS routes (sample).

To employ vessel trajectory patterns, a preprocessing step is required that can denoise
the dataset and create geographic regions at sea (in the form of polygons) that indicate the
traffic patterns of vessels. The extraction of traffic patterns is visualized in Figure 2.
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Figure 2. Preprocessing steps for the extraction of maritime traffic routes.
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Step 1. The first step is the extraction of waypoints. Waypoints are defined as regions
at sea where vessels stop completely, indicating ports or anchorage areas. By identifying
such areas, the origin and destination points of a vessel can be determined. To detect
such points, the AIS positions with zero speed are kept. Then, the DBSCAN algorithm
is employed to cluster together positions of high density close to each other and remove
any possible outliers, e.g., single positions with zero speed farther away from the ports or
anchorage areas that may have been produced due to GPS errors. Empirical experiments
indicated that a value of eps = 2 km (an average radius of medium-sized ports) and a value
of minPts = 10 yield the best results when compared to the port database of the World
Port Index1 (WPI). It is worth noting that the WPI does not contain information about
anchorage areas; therefore, a unified method for identifying both ports and anchorage
areas is required. Next, the resulting clusters are converted to convex hulls (the minimum
bounding geometry that contains all positions of a cluster), and the final convex hulls are
used as waypoints.

Step 2. The next step is the identification of the routes. In this step, we simply segment
the trajectories of the vessels based on the waypoints to incorporate the origin–destination
ports in the dataset. The result of this step is subtrajectories that start and end at a waypoint.

Step 3. The third step consists of interpolation of the AIS positions of each trajectory.
The reason for this step is to fill the gaps that may arise in real vessel trajectories. Such
gaps may affect the quality of the traffic patterns extracted with the proposed methodology,
since they directly affect the quality of the clustering step that follows (Step 4). It is quite
common to have such gaps in vessel trajectories because although vessels must carry an
AIS transponder, the transponder does not need to be switched on [15]. This is a common
tactic when vessels want to hide their tracks and conceal their whereabouts to avoid piracy
attacks or perform an illegal act themselves (e.g., fishing in prohibited areas). AIS gaps in
trajectories may also happen either due to poor weather condition; because the receivers are
deliberately jammed; or, on rare occasions, because of packet collisions that take place when
the AIS receivers are flooded with messages. To this end, Lagrange interpolation, a well-
known and established algorithm was employed for each trajectory, which is preferred over
Newton interpolation because it provides more accurate approximations. The interpolation
itself is not the focus of our study; nevertheless, the various interpolation techniques can be
used in the future to further study their effects on our approach.

Step 4. The fourth and final step is trajectory clustering. In this step, a modified
iteration of the DBSCAN algorithm was utilized to cluster trajectories involving multiple
vessels following the same route (from waypoint to waypoint). This clustering was based
on various factors, including the geographical location, speed, and heading of the AIS
positions. Specifically, the surveillance area was segmented into a grid with a resolution
of 0.2◦—a resolution that matches the Copernicus Climate Change Service2 (C3S) and can
be utilized in future studies to find optimal route recommendations. In each grid cell,
the standard deviations of speed over ground, course over ground, and distance between
AIS positions were calculated. We used the standard deviation because it measures the
amount of variation or dispersion of a set of values. Positions with the lowest dispersions
of speed, heading, and Haversine distance need to be grouped together. Then, a modified
DBSCAN algorithm is employed to further cluster the AIS positions of each vessel type
and origin–destination waypoints in each grid cell. The modified DBSCAN algorithm
employs two more parameters other in addition to the eps and minPts parameters, which
remain the same: the s and c parameters, refer to the speed and the course over ground,
respectively. The values of s and c used for the clustering are the previously calculated
standard deviation values of speed and course over ground for each grid cell. eps is
the standard deviation of the distance. minPts is set to 6 because we need at least two
three-position-length routes per itinerary. Three is the minimum number of positions a
trajectory should have to be considered valid. Therefore, clusters with one route are not
considered common and are excluded from the process. Then, the convex hulls per cluster
are calculated. Consequently, numerous polygons emerged along each route, with each
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polygon representing the specific area where vessels operated with similar speeds and
headings. An illustration of such polygons is depicted in Figure 3. More details about the
preprcessing steps can be found in [34,41].

Figure 3. Convex hull of AIS trajectory clusters.

4. Trajectory Mining and Ocean Path Planning

To the best of our knowledge, this is the first attempt to integrate assimilated experi-
ence modeled by AIS clusters of vessel trajectories with a routing optimization algorithm
in the context of ocean route planning. The main concept and innovation behind this
method is to group similar navigational patterns of past routes for a specific vessel type
(such as container ships, LNG ships, passenger ships, RO-RO, etc.), creating a dense net-
work that defines the navigational and operational boundaries in terms of speed and
heading. This network of past routes can then be leveraged to significantly automate
and expedite the decision-making process, proposing alternative optimal routes in terms of
operational efficiency and environmental compliance for vessels with similar characteristics
(Deadweight-DWT and Cargo Carrying Capacity-TEUs). Through this approach, we can
develop a custom sea grid by identifying and querying the appropriate set of clusters (past
trajectories) based on a specific origin and destination.

The upcoming sections provide a comprehensive demonstration of the key conceptual
steps, mathematical modeling, and algorithmic procedures required to successfully imple-
ment the proposed methodology. Through this detailed explanation, readers can gain a
clear understanding of how to effectively execute and utilize this approach.

4.1. Derivation of AIS Clusters Based on Shortest-Path Principles

In this section, we describe our methodological approach to extract AIS clusters from
the initial dataset corresponding to clusters of past trajectory segments of cargo ships
based on a predefined route (ORIGIN-DESTINATION) and locations. In the following, we
demonstrate the algorithmic procedure to find an alternative path based on AIS data for an
example voyage, from Venezia to Piraeus.

The process is initiated by acquiring a publicly available broad sea grid. Here, we
utilized a sea grid with one degree of granularity (Figure 4). Based on this broad sea grid, we
employ one of the most prominent shortest-path algorithms, namely the A* algorithm, to
extract a rough approximation of the shortest path between our origin and the destination.

The A* algorithm is heuristic search algorithm that is commonly used for path-finding
and routing optimization problems. It is a best-first search algorithm that aims to find the
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shortest path between two points in a graph by combining both the actual cost of the path
and an estimate of the remaining cost to reach the goal. This estimate is typically based on
heuristics such as the Euclidean distance or the Manhattan distance between the current node
and the goal node.

The theoretical backbone of A* is inextricably linked with the Bellman equation and
optimality [53] in the sense that it is approximating, recursively, the functional equation that
describes the optimal solution (here, the shortest path) as a function of the current state and
all possible future states depending the current. The evaluation of the “optimal” state in
each step of the algorithm is conducted by defining a value function (V, i.e., policy function).

Figure 4. Publicly available sea grid (1 degree of granularity).

A* incorporates a cost function that combines both the actual cost of the path from the
start node to the current node, as denoted by g(n), and an estimate of the remaining cost to
the goal node, as denoted by h(n). The cost function is defined as:

f (n) = g(n) + h(n) (1)

where n is the current node being evaluated. The algorithm uses this cost function to
prioritize the exploration of nodes with lower values of f (n), as these are likely to lead to
a shorter path to the goal node. Furthermore, A* uses a priority queue to keep track of
the nodes that have been evaluated but not yet expanded. The priority queue orders the
nodes based on their f (n) values, with the node with the lowest f (n) value at the front
of the queue. The algorithm proceeds by iteratively selecting the node with the lowest
f (n) value from the priority queue, expanding it, and adding its neighboring nodes to
the priority queue. The algorithm continues until the goal node is reached or the priority
queue becomes empty, indicating that no path exists. By employing the A* algorithm on the
aforementioned sea grid for the selected voyage, we obtain the result depicted in Figure 5.
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Figure 5. Shortest -path route for Venezia–Piraeus based on A*.

As evidenced by the graph depicted above, the route has several inherent disadvan-
tages and issues. Some of these issues include abrupt deviations in heading, waypoints
located on land, and a lack of information regarding the speed adopted for each waypoint.
These characteristics make the route suboptimal in terms of vessel utilization. To make
this route feasible, it is necessary to invest significant time and resources in refining and
adapting it. This would involve building a dynamic graph for each waypoint and gen-
erating a range of different possible pathways by taking into account constraints such as
speed (estimated time of arrival (ETA) compliance) and distance from shore. However,
this process would be time-consuming and computationally expensive and may require a
substantial investment of resources.

To overcome this, we exploit the shortest-path route to derive the ideal set of AIS
clusters containing past segments of trajectories undertaken by cargo ships, corresponding
to the voyage of interest. Each cluster of AIS data is described by the convex hull (polygon)
of the points (lat and lon coordinates) lying on the boundaries and contains the set of
features referenced below, outlining the average, the minimum, and maximum , as well the
standard deviations of the speed and heading of the trajectories comprising this specific
cluster (Figure 6). In order to extract the set of clusters corresponding to this route, we
utilize the centroid of each polygon and calculate the distance from each waypoint extracted
by the shortest-path route employed by A*.

Figure 6. Snapshot of features comprising AIS clusters.
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The output of Algorithm 1 is a subset of clusters bounded by the shortest path initially
employed by A* in terms of proximity, utilizing an arbitrary, broad sea grid. These clusters
contain past trajectories segments of cargo ships corresponding to the specified origin–
destination voyage (Venezia–Piraeus), see also Figure 7.

Algorithm 1 Algorithm for AIS cluster extraction based on a path.

Require: shortest path from A* SP ← A* based on sea grid
Require: Convex Hull of clusters CH ← from initial processing
Require: Centroids Ci ← from CH
Require: candidate AIS clusters list Cl

1: for each wi ∈ SP do
2: for each ci ∈ CH do
3: if Distgeodesic(wi, ci) < dist then
4: if speed[wi] > 10 then
5: add wi to Cl

6: Return Cl

Figure 7. Extracted AIS clusters corresponding to Venezia–Piraeus voyage.

4.2. Building the Custom Grid

Utilizing the extracted polygons (AIS clusters) as a foundation, we aim to employ
a tailor-made grid bounded by the convex hull of each cluster in order to construct a
sea grid to be used as a basis for a routing optimization algorithm. To accomplish this
goal, we initiate the process by constructing an adversary grid that is situated within the
rectangular area defined by the latitude and longitude coordinates of both the starting
and ending points of the selected voyage. The grid is constructed utilizing a user-defined
granularity (0.1 step here). Each point is added to the final constructed sea grid if it lies
within the boundaries of the convex hull of the previously mentioned extracted AIS clusters.
Algorithm 2 outlines the exact steps required to realize the aforementioned procedure.

Algorithm 2 Algorithm for grid construction.

Require: Convex Hull of filtered clusters CH f ← from initial processing
Require: Rectangle defining bounding box for selected voyage
← minlon, maxlon, minlat, maxlat

1: for each loni ∈ [minlon, maxlon] with step 0.1 do
2: for each lati ∈ [minlat, maxlat] with step 0.1 do
3: if (lati, loni) ∈ CH f then
4: add (lati, loni) to Gs

5: Return Gs

The employed sea grid with 0.1 degrees granularity is depicted in Figure 8.
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Figure 8. Sea grid constructed based on past AIS trajectories.

By utilizing AIS clusters of past trajectories, we also have the option to employ a
custom, adaptive sea grid based on a set of constraints like narrow sea passages, emission
control areas (ECA/SECAs), piracy zones, sensitive aquaculture, etc.

In Figure 9, we demonstrate an example of a sea grid with 0.1 granularity that employs
custom grid points (yellow point) to narrow sea passages, corresponding to the actual
points belonging to AIS clusters.

Figure 9. Example of a custom grid on a narrow passage.

4.3. Shortest-Path Planning Based on Tailor-Made Employed Grid

Utilizing the sea grid extracted by adopting the consolidated algorithmic procedure
described in Sections 4.1 and 4.2, we are able to employ a routing optimization algorithm
that incorporates past experience in its core functionality by bounding the search space of
alternative routes. The shortest path employing the A* algorithm based on the predefined
grid is depicted in Figure 10a. Each waypoint composing the alternative route belongs to a
certain cluster (or set of clusters) (see Figure 10b) described by a set of inherent variables
(e.g., mean, min, and max speed adopted inside the specific clusters; see also Figure 6).
This set of features can be exploited accordingly to define speed adaptations/deviations,
in alignment with certain types of constraints (estimated time of arrival (ETA) and/or
charter party compliance) to which vessel operation is subject.



J. Mar. Sci. Eng. 2024, 12, 157 12 of 15

(a) (b)

Figure 10. Alternative route construction. (a) Extracted AIS shortest path for the VENEZIA–PIRAEUS
voyage. (b) Clusters assigned to waypoints of alternative route segments.

5. Experimental Results

In this section, we showcase preliminary benchmarking results by comparing our
proposed method with a open source library that is well-established amongst marine
practitioners that extracts the shortest path between an origin and a destination (AtoBviaC).
The aforementioned library is based on a grid employed by domain experts (captains, etc.)
and is therefore highly subjective and influenced by personal experience and perspective,
resulting in a “biased” grid of waypoints. Figure 11 alongside with the results depicted
in Table 1 clearly exhibit the predominance of AIS routing (red polyline) when compared
with AtoBviaC (blue polyline) in terms of shortest-path exploration by calculating the total
distance traveled for a given voyage (e.g., Marseille–Piraeus).

(a) (b)

(c)

Figure 11. Alternative route construction. (a) Marseille–Piraeus. (b) Barcelona–Piraeus. (c)
Alexandria–Barcelona.
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Table 1. Route length comparison.

Basic Comparison AtoBviaC AIS Routing

Distance (nm) (a) 1133.4 1100.36

Distance (nm) (b) 1182.9 1163.43

Distance (nm) (c) 1483.49 1474.99

The accuracy of the AIS-based path-finding algorithm is attributed mainly to the rich
and composite nature of the processed grid constrained by the corresponding clusters,
which results in a versatile network of alternative waypoints to AtoBviaC’s user-defined,
broad grid.

The identification of areas of interest by employing AIS-informed convex hulls corre-
sponding to segments of historical routes allows us to build an "ideal" network of waypoints,
regarding both route exploration and validation, that ultimately yields a more probable,
in terms of optimal path-finding solution, scheme. This network automatically enables the
inclusion of a variety of parameters regarding weather avoidance, bunkering planning, etc.,
and the further exploitation of AIS data by correlating events with a probability distribution
that will be utilized in the context of a stochastic routing optimization algortihm.

6. Conclusions

Trajectory mining is a powerful data mining technique that has been widely applied in
various fields, including transportation, health care, finance, and security. In the maritime
sector, trajectory mining has been used to analyze vessel movements and improve vessel
safety and efficiency. Similarly, the purpose of this research paper is to provide a novel
methodological approach utilizing trajectory mining techniques for the maritime sector.
Specifically, previous research reporting the extraction of maritime traffic patterns from
AIS data in the form of convex hulls was exploited. Then, these convex hulls were further
fine-tuned and segmented to increase their granularity, thus increasing the available vessel
routes to be explored. Finally, an A* search algorithm was developed with a cost function
optimized for the AIS-derived and fine-tuned routes in order to find the shortest available
path. The implementation of such an algorithm allows us to revolutionize and redesign
outdated routing optimization approaches by introducing a data-influenced methodological
framework that aims to expedite and vastly optimize the routing problem by taking into
account past experience mirrored by AIS data.

In future work, we plan to enrich the developed cost function to also include weather
information and fuel consumption data that will ultimately result in an advanced weather
routing application. Stochastic optimization by introducing reinforcement learning con-
cepts is also included in our immediate plan to extend this research by identifying areas of
interest that correspond to a probability distribution rather than discrete values based on
the density of the acquired AIS grid.
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