
International Journal of Information Management Data Insights 3 (2023) 100178 

Contents lists available at ScienceDirect 

International Journal of Information Management Data 

Insights 

journal homepage: www.elsevier.com/locate/jjimei 

Enabling digital twins in the maritime sector through the lens of AI and 

industry 4.0 

Dimitrios Kaklis a , ∗ , Iraklis Varlamis c , George Giannakopoulos b , Takis J. Varelas d , 

Constantine D. Spyropoulos b 

a Department of Informatics and Telematics, Harokopio University of Athens, NCSR Demokritos, Danaos Shipping Co., Omirou 9, Tavros, Athens, 17778, Greece 
b Institute of Informatics & Telecommunications, NCSR Demokritos, Patr. Gregoriou E and 27 Neapoleos Str, Agia Paraskevi, Athens, GR-15341, Greece 
c Department of Informatics and Telematics, Harokopio University of Athens, Patr. Gregoriou E and 27 Neapoleos Str, Agia Paraskevi, Athens, Omirou 9 Tavros, GR 

17778, Greece 
d Danaos Shipping Co., Akti Kondyli 14, Piraeus, GR-18450, Greece 

a r t i c l e i n f o 

Keywords: 

Fuel oil consumption estimation 

Digital twin 

Splines 

Quadratic estimators 

Delaunay triangulation 

Time-series forecasting 

Unsupervised clustering 

Ensemble learning 

Deep learning 

Least squares optimization 

a b s t r a c t 

Sustainability and environmental compliance in ship operations is a prominent research topic as the waterborne 

sector is obliged to adopt ”green ” mitigation strategies towards a low emissions operational blueprint. Fuel-Oil- 

Consumption (FOC) estimation, constitutes one of the key components in maritime transport information systems 

for efficiency and environmental compliance. This paper deals with FOC estimation in a more novel way than 

methods proposed in literature, by utilizing a reduced-sized feature set, which allows predicting vessel’s Main- 

Engine rotational speed ( 𝑅𝑃 𝑀). Furthermore, this work aims to place the deployment of such models in the 

broader context of a cutting-edge information system, to improve efficiency and regulatory adherence. Specifi- 

cally, we integrate B-Splines in the context of two Deep Learning architectures and compare their performance 

against state-of-the-art regression techniques. Finally, we estimate FOC by combining velocity measurements and 

the predicted 𝑅𝑃 𝑀 with vessel-specific characteristics and illustrate the performance of our estimators against 

actual FOC data. 
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. Introduction 

Port logistics can often be a complex and challenging process, with

arious barriers and obstacles that can impede the smooth flow of goods

nd cargo ( Sarkar & Shankar, 2021 ). One of the key challenges in port

ogistics is route optimization, which involves finding the most efficient

nd cost-effective way to transport goods from the port to their destina-

ion. Optimal ocean route planning is strongly connected to the fuel

il consumption (FOC) of sea vessels and the minimization the 𝐶𝑂 2 
missions that reduce cost and the environmental footprint of Shipping.

mong other factors, this approach aids jointly towards the efficient and

obust ship tracking, weather forecasting, and emission control. The ex-

sting spatiotemporal data-driven solutions are employed upon a multi-

ude of features, from vessel tracking devices and structural properties

f the ship, to features that capture weather and internal machinery con-

ition. Vessel monitoring and tracking can be performed using Synthetic

perture Radar (SAR) images and data from the Automatic Identifica-

ion System (AIS) ( Zhao, Ji, Xing, Zou, & Zhou, 2014 ) or other surveil-

ance systems ( Chen et al., 2020 ). The spatial dimension that completes

he vessel monitoring focuses on local conditions, such as the waves and
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urrents that affect the cost of overseas movement, while the temporal

spect monitors environmental and ship-system conditions and exam-

nes how they evolve with time. 

The multitude of data-driven methods that are employed in mod-

rn Information Systems for vessel monitoring and route optimization

use features from multiple sensors onboard ( Filippopoulos et al., 2022 ).

owever, there are many cases where ships share the minimum moni-

oring information (e.g. AIS messages, noon reports), essentially offering

ittle more than their position and (implicitly) their speed over ground

SOG). FOC is highly affected by the velocity of the vessel and the

eather conditions of the voyage. Furthermore it is closely related to the

otational speed, of the vessel’s Main Engine (M/E) ( Avgouleas, 2008 ),

easured in Revolutions Per Minute (RPM). The latter determines the

otational speed of the propeller that produces the required thrust. This

mplies that the optimal route problem can be significantly optimized

nd restructured, if a good predictive model for 𝑅𝑃 𝑀 is made avail-

ble, and the vessel’s velocity can be a useful feature in this direction.

hroughout the manuscript, scalar values of speed 𝑉 are utilized in sec-

ions concerning model employment and experimental evaluation. The

erm velocity is used only as a reference to the reader, to indicate that
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riginally, the acquired measurements of speed, are vectors, entailing

he scalar value and the direction of the vessel. 

This work focuses on the relation between spatiotemporal derived

elocity measurements ( 𝑉 ) and quasi steady operational variables like

𝑃 𝑀 to form a reference 𝑉 → 𝑅𝑃 𝑀 model, without initially including

eather or other operational features in the training phase. The over-

round velocity of the vessel 𝑉 can be easily estimated by harvesting its

 latitude, longitude > coordinates that are collected every few seconds

rom the vessel’s Automatic Identification System (AIS) ( Pallotta, Vespe,

 Bryan, 2013 ). With a model that accurately predicts 𝑅𝑃 𝑀 we can

hen calculate an initial estimate of FOC, using SFOC (Specific Fuel Oil

onsumption; gr/kWh) that is provided by the M/E manufacturer, the

essel’s speed, and some vessel particulars, following a computational

pproach. The 𝑉 → 𝑅𝑃 𝑀 model for a particular vessel type can be used

s a reference basis for more vessels of the same type, and transfer learn-

ng techniques in conjunction with vessel-specific variables to fine-tune

nd apply the same model to more vessels. 

We predict 𝑅𝑃 𝑀 using only the vessel speed information, by gen-

rating different, velocity-based, vector representations in different im-

licit environmental and operational settings of a vessel. Actually, we

osit the argument, that partitioning the input space and creating ap-

ropriate local models connecting velocity-based patterns to 𝑅𝑃 𝑀 esti-

ates can improve the prediction performance over an overall learned

stimation model. To support our claim we develop and evaluate a num-

er of different approaches. Motivated by the work in ( Rippa, 1990 ),

hich connects splines with Delaunay Triangulations ( DTri ), we first

mploy an analytical method for the estimation of 𝑅𝑃 𝑀 , based on the

onstruction of piecewise polynomial representations over a DTri that

artitions an appropriately defined 2D vector space of velocity mea-

urements. We innovatively apply a spatiotemporal derived method

 Wang, Wang, Lai, & Gao, 2020 ) to a domain that exclusively consists

f temporal correlations (in the form of splines) between the velocity

bservations and 𝑅𝑃 𝑀 . We thus demonstrate how splines can be com-

ined with the partitioning of the input space in regions of similar vessel

ehavior, and how deep learning techniques can be used to improve the

rediction of 𝑅𝑃 𝑀 . 

Instantaneous changes in 𝑅𝑃 𝑀 caused either by maneuvering or

ue to severe weather fluctuations, result in a nonlinear relationship

etween 𝑉 and 𝑅𝑃 𝑀 , as varying 𝑅𝑃 𝑀 values correspond to different

anges of speed. Hence, we consider that the representation of a given

oment in time needs to take into account previous values, so that it

an better express the context of a specific instance in time. For this

urpose, we examine how different representations of the input space

from sequential raw data to moving average values) affect the estima-

ion performance. We also examine whether partitioning the input space

nd creating local sub-models improve the estimation of a global model

or the whole input space. 

The aforementioned proposed methodology is complemented with

he employment of a big data tool initially demonstrated in ( Kaklis, Gi-

nnakopoulos, Varlamis, Spyropoulos, & Varelas, 2019 ), which contin-

ously harvests operational data (STW 

1 , 𝑅𝑃 𝑀 , etc.) from the vessel in

eal-time. This cutting-edge integrated framework incorporates the lat-

st technological advances to capture, process, and analyze vessels’ data

n order to improve efficiency, sustainability, and rule compliance. Par-

icularly, we demonstrate the conceptualization and materialization of

 big data application suite that exploits the IoT (Internet of Things)

nd AI (Artificial Intelligence) advancements and technologies, to con-

truct a “digital replica ” of the en-route vessel. The presented frame-

ork aims to facilitate the employment of a holistic representation of

he vessel’s operational state offering a multi-modal approach compris-

ng real-time data aggregation-processing modules, as well as a physics-

nformed model repository to monitor validate and project the FOC of

he fleet and therefore the corresponding emissions. 
1 Speed Through Water 

2 
The proposed platform is thoroughly described in § 3 . 

To this end, this work contributes to the research field of sustainable

aritime operations by: 

• Demonstrating a multi-modal ICT 

2 framework adapted to the needs

of the maritime sector, which offers an efficient, safer, and self-

sustainable operational blueprint; 
• Utilizing core modules of the aforementioned digital ecosystem to

propose and evaluate different input space partitioning methods

(from clustering to triangulation); 
• Examining how these methods affect prediction performance when

combined with different estimators; 
• Performing experiments on real data, acquired from IoT installments

on board container-ship vessels, to evaluate the performance and

behavior of the different proposed system variations; 
• Demonstrating how the estimated RPM 

can offer sufficiently good FOC estimation when combined with

vessel-specific reference (SFOC) curves; 
• Finally, we propose promising ways to empower established deep

sequential models with splines to improve prediction performance

over sequential data. 

As the maritime sector gradually but steadily transcends to Industry

.0 era, the materialization and integration of Management Information

ystems (MIS) constitutes one of the fundamental pillars for all parties

ttached to the waterborne sector (ports, suppliers, charterers, shipown-

rs), to increase competitiveness and enhance operational efficiency.

he holistic digitization of the vessel, through a variety of state of the art

IS, will pave the way for a transparent and greener sea transportation

y continuously assessing and improving the operational, financial and

nvironmental plausibility of all the possible emerging technologies re-

ated to the vessel’s life cycle (energy saving devices, alternative fuels,

ew build designs, retrofitting solutions, Remotely Operated Vehicles

ROVs) & Autonomous Vehicles (AVs) for predictive maintenance, etc.).

he realization of a digitized version of the vessel, leveraging state of the

rt technologies (Big Data Analytics Grover & Kar, 2017 , Process Min-

ng Kouzari, Sotiriadis, & Stamelos, 2023 , Deep Learning Kar & Kush-

aha, 2021; Marc, 2022 ) with integrated systems tools and connectivity

 Deepu & Ravi, 2021; Jain, Seeja, & Jindal, 2021; Venkatachalam & Ray,

022 ) will enable the short and long term competitiveness of maritime

takeholders, by securing efficiency in terms of operational costs (OPEX,

APEX, TCE 3 ) and environmental compliance (CII, EEDI 4 indicators). 

The paper is organized as follows: Section 2 provides a general in-

roduction to the pertinent literature on smart transportation systems,

 thorough examination of routing optimization techniques adopted in

he maritime sector, as well as a short introduction regarding use of

plines in NNs. Section 3 outlines the architecture and the main de-

ign principles of a prototype Digital Twin framework for the maritime

ector, supporting the proposed methodologies, in the context of this

ork, in terms of data aggregation, curation, model training, validation,

nd deployment. Section 4 explains how partially linear models can be

sed for time-series prediction over a partitioned domain and proposes a

wo-step process for predicting 𝑅𝑃 𝑀 based on velocity measurements.

ection 5 demonstrates an extension of the proposed methodology by

ntroducing two deep neural network architectures, one feed-forward

nd one recurrent, which incorporate theory derived from B-Spline ap-

roximation, implicitly or explicitly, to employ a Black-Box and a Grey-

ox approach respectively. Section 6 describes the dataset utilized for

he evaluation process and interprets the experimental results. Finally,

ection 8 provides the main conclusions of this work and outlines next

teps in the context of future work. 
2 Information Communication Technology 
3 Operational Expenditure, Capital Expenditure, Time Charter Equivalent 
4 Carbon Intensity Indicator, Energy Efficiency Design Index 
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. Related work 

Pertinent literature regarding smart and efficient transportation in

he industry (supply chain optimization, autonomous vehicle, logistics

anagement, etc.) as well as regarding societal frameworks (traffic man-

gement, public transportation networks, suburban mobility), concerns

 variety of multi-constraint optimization methods varying from Ge-

etic Algorithms ( Wei, Yang, & Huang, 2021 ), Simulated annealing

 Fermani, Rossit, & Toncovich, 2021 ) and Particle Swarm Optimiza-

ion ( Chondrodima, Georgiou, Pelekis, & Theodoridis, 2020 ), to AI inte-

rated decision making using Reinforcement Learning ( Bai, Shangguan,

ai, & Chai, 2019 ) or NLP based approaches ( Garg, Kiwelekar, Netak,

 Ghodake, 2021 ). The aforementioned practices and methodologies

ttempt to exploit the proliferation of IoT devices and state-of-the-art

ommunication networks (5G) to build self-contained Information Hubs

nd provide a sustainable, safer and cost-effective transportation. 

In the maritime sector, the optimization criteria adopted in the con-

ext of the ship routing problem deal with the minimization of voy-

ge time, fuel consumption (or Fuel Oil Consumption, FOC) and voyage

isk. The approaches, which have appeared so far in the literature, can

e classified into three broader categories: i) Vessel-based optimization ,

hich aims in optimizing a given route with respect to vessel character-

stics, e.g., vessel speed, main-engine rotational speed, draft, trim and

ea-keeping behavior: roll, heave and pitch motions, Coraddu, Oneto,

aldi, & Anguita (2017) , Roh & Lee (2018) ; ii) Environmental-based opti-

ization , which aims in optimizing a given route by taking into account

nvironmental conditions, e.g., wind (speed, direction), wave (height,

requency, direction), currents. Krata & Szlapczynska (2018) , Kim &

im (2017) ; iii) Holistic optimization that combine the two previous ap-

roaches in a common context ( Golias, Saharidis, Boile, Theofanis, &

erapetritou, 2009; Varelas et al., 2013; Vettor & Soares, 2015; Walsh &

ows, 2012 ). 

Most of FOC theoretical calculations, found in pertinent naval engi-

eering literature, are based on the Admiralty coefficient which is exten-

ively used by marine practitioners and engineers in the estimation of

he power that is required for a new build design to attain the required

peed, and is given by the formula: 

 = 

( 3 √Δ2 ⋅ 𝑉 3 
)
∕ 𝑃 𝑆 (1)

here is the displacement (tn) of the vessel, 𝑉 is the desired speed and

 𝑠 is the so-called EHP (Effective Horse Power) (kW). 

The techniques employed for FOC prediction, which are based on

essel characteristics and environmental conditions, can be further

rouped into three sub-categories ( Coraddu et al., 2017 ): i) White Box

r Analytical approaches where analytical equations and approxima-

ion methods (e.g. Computational Fluid Dynamic equation - CFD), are

xploiting a variety of vessel specific variables and hydrodynamic prin-

iples to model the added resistance of the hull of a specific vessel. The

dmiralty constant as well as the resistance constant 𝑅𝐿 ∕ Δ𝑉 2 , where R

s the total resistance and L is the length overall of the vessel, proposed

y Telfer (1963) has been utilized in the past to replicate the hydro-

ynamic behavior of new ship designs by using only the design point

alues of the corresponding parameters (speed (V), displacement ( Δ),

ength (L), breadth (B), draught (T)), rather than the whole spectrum of

he operational domain. Thus it can be easily inferred that the purpose of

he Admiralty constant was to provide an initial baseline to compare the

ydrodynamic performance of different ships in their respective design

onditions, rather than monitor their operational state. This makes evi-

ent that the Admiralty constant was neither intended nor demonstrated

o be a suitable operational hydrodynamic performance indicator for a

hip. ii) Data-driven approaches that combine vessel-trajectory data,

athered from sensors, satellites (AIS data) or Noon Reports, with Ma-

hine and Deep-Learning algorithms. These techniques are ranging from

imple Regression analysis, using stand-alone models like Support Vec-

or Regression (SVR), Lasso Regression (LR), Polynomial Regression, to

nsemble non-parametric schemes like Random Forest regression (RF),
3 
ecision Trees or AdaBoost where the approximation power of each

odel is combined appropriately in order to infer the underlying func-

ion. Gkerekos, Lazakis, & Theotokatos (2019) , Wang, Ji, Zhao, Liu, &

u (2018) and Deep Learning approaches. Ahlgren & Thern (2018) ,

iyeon, Noh, Shin, O-Kaung Lim, & Cho (2018) , Kaklis et al. (2022a) .

ome methods dealt also with the problem of deteriorating performance

s new batches of data corresponding to arbitrary distributions are intro-

uced to the estimator ( Kaklis, Varlamis, Giannakopoulos, Spyropoulos,

 Varelas, 2022b ); iii) Hybrid approaches that combine Machine Learn-

ng methods (also known as black-box models - BBM ), with analytical

ethods (known as white-box models - WBM ), such as the equations of

otion of a freely floating body moving with constant forward speed,

n order to increase the prediction accuracy. The resulting models are

nown as grey-box models ( GBM ) ( Coraddu et al., 2017; Kaklis et al.,

019 ). 

Some studies experimented also with baseline sequential neural net-

orks, by applying a dropout in the weights in order to achieve better

eneralization error ( Gkerekos & Lazakis, 2020 ), or by tuning the num-

er of hyper parameters (i.e., learning rate, number of neurons, number

f layers, activation function, etc.) and utilizing brute force methods

ike grid search ( Jeon et al., 2018; Papandreou & Ziakopoulos, 2020;

avitha, Al Mamun et al., 2017 ). Zhu, Zuo, & Li (2020) employed a

ecurrent NN (Neural Network) in order to estimate FOC, but without

urther research as far as the NN architecture. 

The use of splines in Neural Networks (NN) is not new, never-

heless, it has not yet been used in the FOC prediction problem.

ampolucci, Capperelli, Guarnieri, Piazza, & Uncini (1996) introduced

N with Generalized Sigmoidal neurons (GS-neurons) that employ the

atmull-Rom spline adaptive activation function. Their systems were ca-

able to simulate the behavior of Nonlinear Dynamic Systems. Recently,

 combined B-spline-NN and ARX (autoregressive-exogenous) Model

or representing the nonlinear and linear static parts, respectively, of

 dynamic actuation system was presented in Folgheraiter (2016) . In-

tead of using splines as custom adaptive piecewise activation functions,

in (2012) used cubic splines to calculate the weights in the neurons of

 Deep Learning model that identifies the road surface power spectrum

ensity. Similarly, Chen, Hong, Khalaf, Morfeq, & Alotaibi (2015) pro-

osed a nonlinear equalization approach, which is based on a B-spline

N to simulate the non-linearity of a High Power Amplifier. 

However, all the previous work evaluated the performance of spline-

owered NN on synthetic ( Campolucci et al., 1996; Folgheraiter, 2016 )

r simulated ( Chen et al., 2015; Lin, 2012 ) datasets and not on a real-

orld dynamic system. In this work, we apply similar principles in the

ask of 𝑅𝑃 𝑀 prediction from Velocity time-series and evaluate the per-

ormance of our methods on a real dataset acquired from multiple con-

ainer ship vessels (Living Labs) that were operated on a timeframe of

ne year in order to elicit the appropriate set of requirements and KPIs

or the realization and assessment of the specific use case (FOC approx-

mation). In addition to this, the previous approaches result in much

impler networks than the ones we examine in this work and they are

estricted to the predictive capabilities of the spline models. Even the

xisting multi-input adaptive BSNNs ( Folgheraiter, 2016 ) still lack the

bility to optimize the contribution of each spline to the final prediction

or each input. 

The majority of the approaches found in literature regarding Rout-

ng Optimization and FOC estimation in the maritime sector concern

he implementation of standalone services in the sense that they are

mploying isolated information silos that lack the support mechanisms

nd enhancement of a centralized Information Hub that exploits the

psurge of IoT and Industry 4.0 advancements, to train, validate and

pdate these services in real-time. 

Furthermore they are usually tested on a single vessel and therefore

ack the generalization capabilities of models evaluated in a variety of

hips that are able to adjust and adapt to the underlying function that

escribes the relationship between FOC and each specific vessel, con-

inuously, by exploiting the vast amount of data collected by IoT in-
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Fig. 1. The ”concentrated ” workflow from data collection to FOC estimation. 
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tallments. Frameworks and technological advancements regarding the

ontinuous monitoring of the vessel are inextricably linked with the

merging concept of the so-called Digital Twin in the shipping indus-

ry, as they employ a digital replica of the en-route vessel that is able to

imulate-project and validate in real time the majority of the operational

rocedures. 

. Prototype of a digital - twin framework 

Management Information Systems (MIS) is a discipline that involves

he use of information technology to support and improve the manage-

ent and decision-making processes of an organization. Through the use

f various tools and techniques, MIS helps organizations collect, store,

nd analyze data in order to gain insights and make informed decisions.

losely related to MIS is the emerging concept of the so-called Digital

win , first introduced in Grieves, 2014 , that represents a virtual repre-

entation of a physical system or process that can be used to simulate

nd analyze its behavior. A Digital Twin, adapted to the needs of the

aritime sector, constitutes a virtual holistic representation of the ves-

el that spans its life-cycle and is updated from near to real-time data,

tilizing simulation, machine learning and reasoning to help in decision-

aking, sensing and control actuation. By combining core structural

roperties of traditional MIS and digital twins, organizations can gain a

etter insight of their internal operations and pave the way for a fully au-

omated and fault tolerant decision making procedure, improving sub-

tantially their efficiency and effectiveness. 

In Kaklis et al. (2022a) we demonstrated a Big Data Analytics sys-

em adapted to the needs of the maritime sector. The proposed frame-

ork incorporates a variety of state-of-the-art streaming tools for real-

ime analysis of vessel data as well as tools for continuous integra-

ion/deployment (CI/CD) of ML/DL models regarding operational op-

imization, causal analysis, and event recognition. By utilizing the com-

any’s existing in-house infrastructure concerning Edge-Headquarter

EDGE-HQ) communication between the vessel and the office, we can in-

orporate the aforementioned pipeline in a broader data acquisition net-

ork in order to aggregate, synchronize and process data coming from

he vessel in real-time. The resulting platform (see Fig. 1 ) constitutes a

rototype version of a virtual replica of the en-route vessel (Digital Twin

DT) framework) that aims to assist shipowners to achieve efficiency in

eet management with tangible benefits in terms of emission reduction,

nvironmental compliance and protection of crew safety onboard. 

In the following, we describe how we can minimize human involve-

ent in such systems by introducing fully automated administrative
4 
orkflows following the design principles that govern Expert Systems,

n order to create a centralized digital framework to manage efficiently

ffice - vessel communication, model simulation as well as reasoning

nd decision making. 

In the context of this work, the aforementioned framework was

dapted to the needs of the proposed methodology, by acquiring stor-

ng and analyzing the speed of the vessel as well as the corresponding

𝑃 𝑀 of the ship’s M/E. Furthermore leveraging the parallel processing

apabilities of streaming tools with a set of orchestration frameworks we

ere able to build an adaptive model repository. As an entity this is part

f a broader component of the DT framework referenced as Knowledge

ub (KH) (see Section 3.1 ). 

Mainly, the proposed DT framework consists of the following com-

onents, as shown in Fig. 2 : 

• IoT backbone suite & Third party Connectors: Data acquisition layer
• Knowledge Hub: Processing - Orchestration - Computing - Deploy-

ment layer 
• Main GUI: Visualization layer - Dashboard 
• Decision Support System (DSS): KPIs identification, evaluation of

possible solutions 
• Edge Computing: Sensing & Control actuation layer, Requirements

& Refinements elicitation 

.1. Knowledge hub 

The core module of the proposed DT framework is the Knowledge

ub (KH). The hub incorporates a variety of multi-disciplinary ap-

roaches regarding data provision, re-usability and curation as well

s state-of-the-art frameworks for model versioning and deployment.

t constitutes a holistic approach that aims to create an adaptive and

ersatile observatory for the shipping industry that comprises struc-

ured methodologies for interconnecting each use case with the appro-

riate data, processing algorithms, and simulation models. All these are

oined together adequately, facilitating towards the decarbonization of

he maritime sector. More specifically, the core modules of KH as pre-

ented in Fig. 2 are CMDS (Centralized Messaging Distribution System),

he Monitoring platform as well as the Model Repository . These adap-

ive multi-purpose systems combine a variety of edge technologies, in a

onsolidated approach that aims to streamline, standardize, as well as

ffer a layer of transparency and encapsulation of the various processes

nd scenarios involved in the DT ecosystem. The appropriate orchestra-

ion of the three layers related to: 1) the harmonization of information 2)

torage of different versions of models as well as 3) the decision-making
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Fig. 2. Holistic representation of the envisaged DT framework. 

Fig. 3. The streamline procedure adapted for 

the FOC estimation use case. 
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enter, attribute to the DT ecosystem the characteristic of gradual cog-

itive capability facilitating towards the development of self-sustained

dministrative workflows that aim to continuously refine, update and

ptimize the system as a whole. 

Fig. 3 illustrates a multi-modal streamlined procedure, stored in KH,

dapted to the task of FOC estimation. 

The main goal of KH is to largely simplify and standardize the way

he various tools and services provided by the DT’s ecosystem are oper-

ting and communicating with each other, following the standards of an

CT (Information Communication Technology) framework. The general

treamlined procedure is based on: 

• Data Curation from bias and noise, 
• Data Processing and feature selection, and 
• Model Versioning & Deployment. 

Data processing focuses on determining the most important features,

epending on the use case, and data curation accounts for removing the

ias (outliers, faulty measurements) from the bulk of data collected in

eal time from IoT installments. The resulting feature set is utilized ac-

ordingly in the training process of data-driven models or to analytically

alculate theoretical models inferred from pertinent naval engineering

iterature. 

As showcased in Fig. 3 , the general procedure can be adapted to

he needs of a specific use case by associating relevant operational vari-
5 
bles with the appropriate algorithms and simulation models and ap-

lying them to practice. The following sections focus on the specific

ase of FOC estimation, through 𝑅𝑃 𝑀 prediction from vessel speed,

nd provide a sensitivity analysis framework that aims to evaluate each

pproach individually in order to find an ideal RPM-FOC predictive

cheme. 

. Efficient predictions over time-series data utilizing clustering 

The relation between 𝑅𝑃 𝑀 and 𝑉 can be described via a par-

ially linear function with nonlinear segments over time as showed in

aklis et al. (2019) and also derived from operational data as demon-

trated in Fig. 4 . This non-linearity between 𝑉 and 𝑅𝑃 𝑀 in different

ime segments on a vessel’s trip may be attributed to two reasons: i) am-

ient weather conditions (such as wind speed or/and wave heights), ii)

udden changes in the propeller shaft (RPM) that don’t translate imme-

iately to a corresponding change in velocity. This complex dependence

f 𝑅𝑃 𝑀 on 𝑉 is evident in Fig. 4 , which depicts data from measurements

n a real vessel over a time period of approximately 10,000 minutes. The

gure indicates that that the relationship between the two variables in-

olves linear as well as nonlinear segments. 

Based on the above remark, it is legitimate to assume that a mix of

inear and nonlinear models can be used for the prediction of 𝑅𝑃 𝑀 from

 series of 𝑉 measurements in each segment of the vessel trip. 
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Fig. 4. Propeller operating conditions in different speed ranges. 
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Furthermore, utilizing naval-architecture literature on calculating

he total resistance ( 𝑅 𝑇 ) of a vessel, we can extract preliminary insights

egarding the relationship between 𝑉 and 𝑅 𝑇 and consequently get an

nitial conclusion on the relationship between 𝑉 and 𝑅𝑃 𝑀 from stan-

ard principles. More specifically it is known from basic ship theory that

he total resistance 𝑅 𝑇 is calculated as follows: 

 𝑇 = 

1 
2 
𝐶 𝑇 𝜌𝑆 𝑉 

2 , (2)

here 𝐶 𝑇 is the non-dimensional total resistance coefficient ( 0 < 𝐶 𝑇 < 1),

is the sea water density, 𝑉 is the vessel speed and 𝑆 is the wetted sur-

ace of the hull. The power 𝑃 𝑠 absorbed by the ship propulsion system,

haft horsepower ( 𝑆𝐻𝑃 ) in the marine engineering terminology, is ex-

ressed as: 

 𝑠 = 

𝑅 𝑇 𝑉 

𝜂𝑝 
, (3a)

here 𝜂𝑝 is the propulsion coefficient, usually ranging from 55% to 75% ,

efined as: 

𝑝 = 𝜂𝑔𝑒𝑎𝑟 𝜂𝑠ℎ𝑎𝑓𝑡 𝜂𝑝𝑟𝑜𝑝𝑒𝑙 𝑙 𝑒𝑟 𝜂ℎ𝑢𝑙𝑙 . (3b)

A high level interpretation of our work is depicted in Fig. 1 . In the

rst step of the pipeline we determine the source of the data, generated

ither from the AIS or from on board monitoring installments. Depend-

ng on the source we proceed with the Data Transformation - Validation

nd Cleaning steps where we extract the necessary features ( 𝑉 , 𝑅𝑃 𝑀

n this work) and remove the noise (outliers, errors) with a streamlined

rocedure described more thoroughly in Kaklis et al. (2019) . After the

rocessing step is complete, we advance with the clustering phase where

e partition our input space in different operational states, in terms of

elocity and the corresponding 𝑅𝑃 𝑀 , utilizing a clustering technique

e.g. K-Means, DTC). In the training step that follows, we assemble and

rain a collection of predictors (either local estimators that take into ac-

ount the temporal correlations discovered in the previous step or Deep

eural Network architectures) in order to optimize the prediction of

/E’s RPM. Finally, after evaluating the models we select the best-fit

n terms of accuracy and generalization error and we proceed by dis-

laying an initial approximation of the FOC utilizing vessel’s specific

ariables. 

The current work focuses on the methodology for building and using

he predictive RPM-FOC models, and does not put emphasis on the im-

lementation aspects that outline the DT framework. The model build-

ng phase comprises an initial step of data partitioning in segments of

imilar 𝑉 → 𝑅𝑃 𝑀 relation and a second step of ML/DL model training.

imilarly, the inference phase comprises a step where the input data

re mapped to the appropriate partition and a second step where the

espective model is used to get a prediction. 

In order to improve the predictive ability of our model we include

he impact of the memory window for each instantaneous velocity 𝑉 ( 𝑡 𝑖 )
hat is formed from the 𝑘 previous values of 𝑉 ( 𝑡 ) . So a formal definition
𝑖 

6 
f the problem of predicting 𝑅𝑃 𝑀 values based on the continuously

onitored ship velocity over ground 𝑉 can be defined as follows: 

efinition 1. Given the vessel’s speed for 𝑘 + 1 consecutive points in

ime { 𝑡 0 , … , 𝑡 𝑘 } , (i.e., a time series ( 𝑉 0 , … , 𝑉 𝑘 ) of velocity values), find a

unction 𝑓 ( 𝑉 0 , … , 𝑉 𝑘 ) ∶ 𝑅 

𝑘 → 𝑅 , which estimates the engine’s 𝑅𝑃 𝑀 at

he subsequent moment 𝑡 𝑘 +1 . 

.1. RPM prediction in two steps 

The principles that govern the 𝑉 − 𝑅𝑃 𝑀 relationship as described

bove, can be utilized as the basis of a generic and modular prediction

rocess that facilitate different tasks and implementations. More specif-

cally we introduce a two-step process that includes: i) partitioning of

he input space, and ii) finding an approximation of the mapping func-

ion 𝑅𝑃 𝑀( 𝑉 , 𝑉 𝑁 ) in the sense of Definition 1 , through an aggregate of

uadratic (or higher order) polynomials, each of which models one of

he partitions generated in the first step. Here 𝑉 𝑁 indicates the average

f 𝑉 over a memory window that involves 𝑁 previous velocity measure-

ents. We elaborate on the above idea to support different partitioning

pproaches and locally-aware approximation functions in the following

aragraphs. Henceforth, we interchangeably use the terms ”clustering ”

nd “partition ” in order to denote the split of the input space into sub-

paces. 

In order to partition our input space ( 𝑉 , ̄𝑉 𝑁 ) in areas of distinguish-

ble distributions (different vessel operational states) taking into ac-

ount temporal autocorrelation and heterogeneity, we employ the meth-

ds described below: 

• K-means clustering (KM) ( Lloyd, 1957; MacQueen, 1967 ) is a vec-

tor quantization method, originating from the field of signal process-

ing, that is widely used for data clustering. Its main aim is to partition

the observations (vectors) into 𝐾 clusters so that each observation

belongs to the cluster of its nearest centroid (i.e. representative vec-

tor of the cluster). 
• Triangulation clustering (DC) ( Eldershaw & Hegland, 1997 ) first

partitions the training space in triangles using a triangulation-based

method. The main reason for opting in favor of DTri among other tri-

angulation techniques, is that is closely connected with the so-called

Delaunay Configurations that, as stated in Neamtu (2007) , is linked

with a multivariate extension of the univariate B-splines used in this

work for approximation. All these properties combined, secure the

construction of piecewise linear surfaces of minimal Dirichlet energy

as stated again in Neamtu (2007) resulting in concentrated homoge-

neous clusters of data with low variance. 

y selecting a cut-off value 𝑝 (used to determine the neighboring points

rom the adjacency list of each candidate vector [ 𝑉 , 𝑉 𝑁 ] ), we can find for

ach point in the training space its neighboring vertices in the resulting

raph. By applying a Depth-First-Search (DFS) algorithm it is possible to

nd isolated subgraph components recursively as depicted in Fig. 5 (b),

hich shows the resulting clusters for the pointset in Fig. 5 (a). 

The basic idea behind clustering with triangulation is that it defines

he cluster in a much broader manner, than, e.g., 𝐾-means, being able

o cluster observations in non-spherical neighborhoods. Also K-means,

n its general definition used here, does not seem able to detect outliers.

n contrast to the K-means algorithm, DT-based clustering, as depicted

n Fig. 5 (b), is able to detect and remove outliers from clusters resulting

n more “reliable ” clusters. 

In order to utilize appropriately the partitioning of the input space

e continue by employing and testing a set of regression methods that

ake into consideration the heterogeneous distributions of the clusters

enerated in the first step. These regression methods correspond to ei-

her baseline ML models or deep learning architectures each one mod-

ling the partitioned data in a different way. We infer a Spline estima-

or for each one of the partitions of the input space, to employ a more

daptive prediction scheme than a single generic approximation func-

ion, over the whole space. Regression models that employ multivariate
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Fig. 5. Delaunay Triangulation and resulting clustering. 
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daptive regression splines ( Friedman, 1991 ) capture non-linearities us-

ng piecewise polynomial functions. 

In the context of this work two additional regression techniques

ere used as a baseline alongside Spline Regression: Linear Regression

 Montgomery, Peck, & Vining, 2021 ) and Random Forest Regression

 Cootes, Ionita, Lindner, & Sauer, 2012 ). 

.2. Averaging global and local effects: White Box modeling 

In order to appropriately utilize theory concerning total resistance

alculation (Eq. (2) ) as well as input space partitioning, we demon-

trate in this section a physics inspired procedure to construct different

-Spline interpolants on different appropriately constructed 2 𝐷 clus-

ers. These clusters are modeled on the basis of the two alternatives,

amely, K-Means or DTC, and they correspond to the reduced feature

et [ 𝑉 ( 𝑡 𝑖 ) , 𝑉 𝑁 ( 𝑡 𝑖 )] of the vessel’s speed as formulated in previous para-

raphs. Diving into pertinent maritime engineering literature in order

o extract further useful information regarding the relationship between

he power absorbed by the propulsion system and the speed 𝑉 of the

essel, we identified another important indicator outlining the hydrody-

amic performance of the vessel, namely the so-called modern Admiralty

oefficient 𝐶 𝐴𝐷𝑀 

, adopted by the International Towing Tank Conference

ITTC, 2021), defined as below: 

 𝐴𝐷𝑀 

= 

Δ2∕3 𝑉 3 

𝑃 𝑠 
, (4)

here Δ is the displacement of the vessel in tons. Values of the dimen-

ional coefficient 𝐶 𝐴𝐷𝑀 

usually range from 400 to 600, the higher the

alue the more economical the vessel. From (4) and (3a) we readily get

he following admiralty-coefficient-based estimators for the resistance

 𝑇 and power 𝑃 𝑠 : 

 𝑇 = 𝜂𝑝 𝐶 
−1 
𝐴𝐷𝑀 

Δ2∕3 𝑉 2 , (5a)

nd 

 𝑠 = 𝐶 −1 
𝐴𝐷𝑀 

Δ2∕3 𝑉 3 . (5b)

For small variations of 𝑉 around a design velocity one can assume

hat 𝐶 𝐴𝐷𝑀 

in (5) remains constant. This is not anymore the case when

 ship should operate efficiently for more than one design speeds or

long an interval of speeds. In the spirit of Gupta, Taskar, Steen, &

asheed (2021) one could propose the following generalization of (5b) :

 𝑠 = 𝑐Δ𝑞 𝑉 𝑟 , (6)

here the factor 𝑐 and the exponents 𝑞 and 𝑟 are treated as unknowns.

oting that: 

n ( 𝑃 ) = ln ( 𝑐) + 𝑛 ln (Δ) + 𝑚 ln ( 𝑉 ) , (7)
𝑠 

7 
n Gupta et al. (2021) it is proposed to work with linear polynomials

n the logarithmic scale and use the available measurement data for

stimating the unknowns 𝑐, 𝑞 and 𝑟 . 

Instead, our approach is to train a cubic multivariate B-Spline model

or the chosen QoI (Quantity of Interest), e.g., 𝑃 𝑠 , 𝑅𝑃 𝑀 , 𝐹 𝑂𝐶, using

s variables the adopted feature set. Choosing our B-spline model to be

ubic stems from the fact that estimators (3a) and (5) depend on 𝑉 𝑟 ,

 = 2 , 3 . As a result our model is able to exactly reconstruct any QoI

hat depends linearly ( 𝑟 = 1 ), quadratically ( 𝑟 = 2 ) or cubically ( 𝑟 = 3 )
ith respect to a feature variable 𝑥 . If the dependence is different from

 

𝑟 , 𝑟 = 1 , 2 , 3 , the cubic B-Spline model remains efficient due its approxi-

ation capacity characterized by quadratic rate of convergence towards

ny smooth ( 𝐶 2 ) QoI ( 𝑥 ) as the window ℎ of the B-spline knot sequence

ecreases. In Fig. 6 below we depict the resulting curve from fitting with

ubic B-Splines in a snapshot of the 2 𝐷 space of [ 𝑉 ] → 𝑅𝑃 𝑀 and the cor-

esponding surface from training the multivariate equivalent B-Spline

nterpolant in the 3D space of [ 𝑉 ( 𝑡 𝑖 ) , 𝑉 𝑁 ( 𝑡 𝑖 )] → 𝑅𝑃 𝑀 observations. 

By training and eventually aggregating, multiple, physics informed,

-Spline interpolants on different clusters we are able to construct a

ulti modal adaptive scheme that aims to balance ideally the trade-off

etween goodness of fit and smoothness by exploiting core properties

f third degree (Cubic) Spline interpolation (e.g continuous 2nd deriva-

ives). 

. Combining splines with deep learning 

In order to jointly take advantage of the Delaunay Triangulation

roperties and the capabilities of nonlinear models and their combina-

ions to predict relations that are not linear in all segments, we propose

 black-box alternative to the WB approach of § 4 . More specifically, we

se Delaunay Triangulation to partition the input space in conjunction

ith NN (Neural Networks) to approximate the mapping function. The

ifferent input space partitions and the respective subsets of training in-

tances are used to train individual predictors. Since NN allow us to learn

ow to combine multiple predictors using additional layers, we exam-

ne several NN-architectures that consolidate the approximation power

f multiple predictors. We evaluate the performance of such methods,

y moving gradually from a method that trains separately different esti-

ators and learns how to ideally combine these estimators in a weighted

verage ensemble, to the recurrent equivalent of such methods, namely

he LSTM (Long-Short Term -Memory) network. 

In the reviewed literature ( Campolucci et al., 1996; Fey,

ric Lenssen, Weichert, & Müller, 2018; Folgheraiter, 2016; Zhengyu,

onald S., Williams, & Xiangning, 2007 ) the connection between B-

pline functions and NN is implemented mostly through custom acti-

ation functions that utilize the piecewise estimators in the final layer

f the networks in order to filter out the information passed in the next

raining cycle to update the weights of the model. In this work, the basic
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Fig. 6. 2 𝐷 Bi-variate & 3 𝐷 Multivariate B-Spline fitting. 

Fig. 7. The NN-architecture that predicts the weights to com- 

bine all models (local and general) in a weighted average sum - 

wAvgNN . 
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N consists of one input and three hidden layers, each one consisting

 number of neurons specified by extracting information from a pre-

rained regression model. A rectified linear unit (ReLU) is used as the

ctivation function of each layer. ReLU is defined as 𝑦 ( 𝑥 ) = max (0 , 𝑥 ) ,
nd is a function that – in contrast to other activation functions – back-

ropagates the larger percentage of the error on the output to update

he neuron weights. A stochastic gradient descent process, namely the

daGrad-optimizer of the Keras framework, has been used to optimize

he weights for the neural network. 

The various implemented NN-architectures, which are described in

etail in the following subsections, are the following: 

• A NN-architecture, termed wAvgNN , that combines different estima-

tors trained on different clusters, in a weighted average, in which

the weights are learned after training. 
• A second NN-architecture, termed BaseLSTM , that employs a basic

Long-Short Term Memory Neural Network, with multiple parallel

time-series as input. 
• Finally, an extension of the aforementioned recurrent NN that

attempts to utilize spline interpolation by introducing a Spline-

informed recurrent NN, termed SplineLSTM . 

.1. Consolidating models in an ensemble NN: Black box modeling 

The approaches presented so far are based on the initial partitioning

f the training data. They classify any new sample to the most appro-

riate cluster, by using a similarity function, and consequently use the

espective local effect model - 𝑁𝑁 in Fig. 7 - for predicting 𝑅𝑃 𝑀 . 
𝑖 

8 
In this section, we propose a NN-architecture that utilizes a layer in

rder to find a weighted average of all the local models and the global

odel. This weighted average quantifies the percentage of participation

f the local models and the global model to the final prediction of 𝑅𝑃 𝑀

n a data driven manner. The extra layer - as depicted in Fig. 7 - aims to

acilitate the cognitive curve of the neural proposed, eventually paving

he way for a more robust, regularized prediction scheme. 

The proposed predictive scheme is depicted in Fig. 7 and consists of

any local models trained on different parts of the dataset as described

n previous sections (for 𝑉 and ̄𝑉 𝑁 ) in the input layer, which is densely

onnected with the 𝑘 neurons of the output layer. 

In this methodological approach a global spline-regression model

 OverallNeural ) is pre-trained on the complete dataset, and is used to

efine the number of clusters, which equals the number of knots of the

pline. Then, using the predictions ( 𝑅𝑃 𝑀 𝑖 , … , 𝑅𝑃 𝑀 𝑘 ) of the local mod-

ls we train a NN to find the weight vector [ 𝑊 𝑖 , … , 𝑊 𝑘 ] used to calculate

he (weighted) average of the local models. 

Each training instance [ 𝑉 ( 𝑡 𝑖 ) , 𝑉 𝑁 ( 𝑡 𝑖 )] is evaluated at every local effect

odel ( 𝑁𝑁 𝑖 ) and results in estimating one 𝑅𝑃 𝑀 𝑖 value. The combined

utputs form a vector ( ∈ 𝑅 

𝑘 ) of 𝑅𝑃 𝑀 , where each 𝑅𝑃 𝑀 𝑖 value corre-

ponds to the 𝑖 th domain of the local model 𝑁𝑁 𝑖 function that is trained

n a particular cluster. The NN architecture can, thus, be used to learn

he weight that must be assigned to the prediction of the 𝑖 th local effect

N in the weighted average. The target weights of each local effect NN

re calculated and updated in the back-propagation process as follows:

 𝑖 = 

√ |𝑅𝑃 𝑀 𝑖 − 𝑅𝑃 𝑀 𝑡𝑟𝑢𝑒 |2 (8)



D. Kaklis, I. Varlamis, G. Giannakopoulos et al. International Journal of Information Management Data Insights 3 (2023) 100178 

w

 

t

 

 

 

o  

d

5

 

s  

a  

n  

t  

m  

t  

a  

f  

j  

S  

w  

d  

s  

r  

i  

s  

u  

c  

t

 

t  

o  

w  

(  

(  

r  

f  

w  

(

⎡⎢⎢⎢⎢⎢⎣
 

L  

p  

r

5

 

c  

(  

c  

p  

t  

I  

k  

b  

o  

c  

t  

w  

i  

c  

t  

b  

c  

t

 

m  

t  

a



t  

𝑓

 

i  

l  

d  

r  

M  

f  

l  

o  

𝑅  

i  

F

 

S  

c  

T  

a  

t  

c

 

w  

e  

𝑁  

a  

s

 

d  

t  

e  

e

 

t  

𝐱  

S  

t  

t

𝑓  

B  

i  

i  

f  

a  

n  

n  

t  
here 𝑅𝑃 𝑀 𝑡𝑟𝑢𝑒 is the actual value for this training instance. 

At the final stage we estimate 𝑅𝑃 𝑀 by calculating average between

wo terms: 

• the weighted average of each 𝑅𝑃 𝑀 𝑖 value evaluated at each cluster

with the weights predicted from the NN, 
• the 𝑅𝑃 𝑀 𝐺𝑒𝑛 prediction the 𝐺 𝑒𝑛𝑀𝑜𝑑𝑒𝑙 trained in the dataset as a

whole. 

We expect that the above process provides a more data-aware version

f the averaging operator, making the architecture more adaptive to

ifferent settings. 

.2. Combining LSTM neural networks with splines 

The aforementioned BBM technique (§ 5.1 ) assumes that the input

pace is two-dimensional, combining velocity measurements with aver-

ge velocity values estimated over a time window before each instanta-

eous measurement. Since velocity is actually a time series, we decide

o evaluate the performance of deep (recurrent) NN-architectures, and

ore specifically LSTMs on this time-series view of the data. Long short-

erm memory (LSTM) is an artificial Recurrent Neural Network (RNN)

rchitecture ( Hochreiter & Schmidhuber, 1997 ), that has been utilized

or time-series prediction ( Hua et al., 2019 ), classification ( Karim, Ma-

umdar, Darabi, & Chen, 2017 ) and anomaly detection ( Malhotra, Vig,

hroff, & Agarwal, 2015 ). Unlike standard feed-forward neural net-

orks, LSTM also contains feedback connections and can process single

ata points (such as images), as well as entire sequences of data (such as

peech, video or trajectories). The relative insensitivity of LSTM’s with

espect to the length of gaps between important events in a time series

s an advantage compared to RNN’s, hidden Markov models, and other

equence learning methods in numerous applications. To this end, we

tilize an LSTM NN-architecture for the prediction of 𝑅𝑃 𝑀 values from

onsecutive velocity measurements in a time window, as described in

he following paragraphs. 

Using the same window length 𝑁 as in the non-recurrent architec-

ures described previously – and instead of using ( 𝑉 , ̄𝑉 𝑁 ) – we utilize the

riginal sequence of 𝑁 measured velocities from time 𝑡 0 − 𝑛, 0 ≤ 𝑛 ≤ 𝑁 ,

here 𝑡 0 is the time of interest and 𝑁 is a specific time-window length

time-lag) that consists of prior information for the state of the vessel

here velocity) that is useful to estimate the 𝑅𝑃 𝑀 value at time 𝑡 0 . The

esulting input vector at a time 𝑡 𝑖 is of dimension 𝑁 + 1 and has the

orm: [ 𝑉 𝑖 , 𝑉 𝑖 1 …𝑉 𝑖𝑁 ] . Then, given a sequence of moments through time,

e get the following correspondence between the input and the output

RPM) vectors: 

 

 

 

 

 

 

 

[ 𝑉 1 , 𝑉 11 …𝑉 1 𝑁 ] 
⋮ 

[ 𝑉 𝑖 , 𝑉 𝑖 1 …𝑉 𝑖𝑁 ] 
⋮ 

[ 𝑉 𝑀 

, 𝑉 𝑀1 …𝑉 𝑀𝑁 ] 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
⟶

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑅𝑃 𝑀 1 
⋮ 

𝑅𝑃 𝑀 𝑖 

⋮ 
𝑅𝑃 𝑀 𝑀 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(9) 

where 𝑁 is the step to form the time window vectors for the hidden

STM units as we described before and 𝑀 is the sample size. The out-

ut value to predict is 𝑅𝑃 𝑀 . This baseline LSTM approach is further

eferenced as BaseLSTM . 

.2.1. SplineLSTM : Grey box modeling 

Grey Box models, a term first introduced in Bohlin (1992) , are a

ombination of theoretical models (WBM) and data driven approaches

BBM). WBM’s are usually simpler models in terms of computational

omplexity and they attempt to calculate the target variable of the ap-

roximation problem at hand from a theoretical standpoint by applying

he contextually appropriate law of physics that governs each problem.

n their simplest implementation GBM’s are attempting to integrate prior

nowledge extracted from a theoretical model into a BBM. They do this

y incorporating two approaches: a naive approach (N-GBM), where the
9 
utput of the WBM is utilized as a new feature in the BBM training pro-

ess, and a more advanced approach (A-GBM), where a regularization

erm is introduced in the loss function of the BBM. Another approach

ould be to induce in a core module (layer, activation function, etc.)

nformation extracted from the WBM in order to facilitate the cognitive

urve (learning rate) of the of the network. Our aim in this section is

o combine a black box deep learning architecture with the theoretical

ackbone of naval engineering and develop a more efficient GBM that

ould better approximate resistance on the wetted area of the vessel and

herefore 𝑅𝑃 𝑀 . 

In alignment with the above comments, N-GBM approaches refer

ostly to methods that incorporate in the training process of a BBM,

he output of a theoretical baseline model (WBM). Usually, an N-GBM

llows the creation of a new dataset with an enriched input vector: 

 𝑛 = 

{ ( [ 
𝑥 1 

𝑓 𝑊 𝐵𝑀( 𝑥 1 ) 

] 
, 𝑦 1 

) 

, … , 

( [ 
𝑥 𝑛 

𝑓 𝑊 𝐵𝑀( 𝑥 𝑛 ) 

] 
, 𝑦 𝑛 

) } 

hat is in turn employed accordingly to generate a BBM in the form:

 𝐵 𝐵 𝑀 

([ 𝑥, 𝑓 𝑊 𝐵𝑀 

( 𝑥 )]) . 
In this section we will test an A-GBM approach by including prior

nformation extracted from the Spline WBM ( 𝑓 𝑊 𝐵𝑀 

) (§ 4 ) in the forget

ayer of a deep recurrent NN. This architecture takes advantage of the

esign principles adopted in previous sections to implement the recur-

ent equivalent deep learning network of the model presented in § 5.1 .

ore specifically, instead of forming different interpretations (mapping

unctions) for different partitions of the input space, we attempt to uti-

ize the adaptive nature of LSTM networks to automate the translation

f different operational states ( 𝑉 , 𝑉 𝑁 ) (fluctuations) to the appropriate

𝑃 𝑀 domain. In this LSTM alternative, the time-series of this extended

nput vector are fed to a respective LSTM architecture, as depicted in

ig. 8 . 

The main extension in comparison to the architecture described in

ection §5.1 , is that the first layer is replaced with a layer of LSTM

ells. The rest of the architecture remains the same as described in §5.1 .

he output ℎ 𝑘 of the LSTM hidden layer is an embedding representing

 𝑁-dimensional space. The embedding is then connected sequentially

o a standard dense layer of reduced dimensionality, 𝑘 , which in turn is

onnected to the output layer, providing the final estimate. 

Consequently, the training dataset is transformed using a moving

indow of size 𝑁 in order to produce the respective input samples for

ach time step. With this transformation the LSTM network looks back

time steps to form the hidden state units ℎ 𝑡 − 𝑁 . The hidden state acts

s the model’s memory as it holds information on data the network has

een before. 

In order to facilitate the construction of appropriate LSTM embed-

ings we introduce a new method of exploiting the information ex-

racted by Spline interpolation (see § 4 ), and more specifically the gen-

rated knots of the Spline interpolant to introduce a Spline-Informed

mbedding space. 

The main difference from traditional LSTM networks, here referred

o as BaseLSTM, is that we replace the affine transformations (e.g: 𝐲 =
 ∗ 𝔸 

𝑇 + 𝐛 ) in the Forget Module ( 𝑓 𝑡 ) of the network with the cubic

pline representations of the current ( 𝑥 𝑡 ) and the hidden states ( ℎ 𝑡 − 𝑁 )

o traverse from the traditional forget gate representation (Eq. (10) a) to

he representation described by equation ( 10 b). 

 𝑡 = 𝜎( 𝑊 𝑓 ∗ [ ℎ 𝑡 − 𝑁 , 𝑥 𝑡 ] + 𝑏 𝑓 ) ( 𝑎 ) ⟶ 𝑓 𝑡 = 𝜎( 𝑓 𝑊 𝐵𝑀 

([ ℎ 𝑡 − 𝑁 , 𝑥 𝑡 ]) ( 𝑏 )
(10) 

y altering the forget layer of the LSTM network, we are able to

nduce prior information extracted from the Spline WBM ( 𝑓 𝑊 𝐵𝑀 

)

nto the LSTM architecture and construct, as proven next, ”meaning-

ul ” embedding representations of the data by mapping them into

 physics informed space. The internal topology of the SplineLSTM

etwork is depicted below in Fig. 9 . Fig. 10 provides a prelimi-

ary comparison of the performance of SplineLSTM , as an alterna-

ive grey box approach, versus that of the traditional 𝐵𝑎𝑠𝑒𝐿𝑆𝑇 𝑀 for
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Fig. 8. The SplineLSTM architecture. 

Fig. 9. SplineLSTM internal network topology. 

Fig. 10. Performance comparison between SplineLSTM and 𝐵𝑎𝑠𝑒𝐿𝑆𝑇 𝑀 . 
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 set of ≈ 100 [ 𝑉 𝑖 , 𝑉 𝑖 1 …𝑉 𝑖𝑁 ] observations. A more detailed experi-

ental evaluation of the SplineLSTM network will be conducted in

6 . 

At this point we conclude with the list of proposed alternatives for

ackling the 𝑅𝑃 𝑀 estimation challenge. In summary, we have devel-

ped a number of approaches based on the following concepts: 
10 
• Utilize DTri (Delaunay Triangulation), or K-Means to find neighbor-

hoods of similar ( 𝑉 , ̄𝑉 𝑁 ) fluctuations and construct piecewise Cubic

B-spline interpolants on different clusters in order to approximate

RPM; see in § 4 . 
• Utilize an ensemble of local models, with learnt contributions in

𝑅𝑃 𝑀 estimation, see in § 5.1 . 
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Table 1 

RPM Prediction & Clustering techniques summary. 

Type Technique Abbreviation Section 

Prediction Linear Regression LR 4.1 

Spline Regression SR 4.1 

Random Forest Regression RF 4.1 

Weighted average Neural wAvgNN 5.1 

LSTM with velocity time-series BaseLSTM 5.2 

LSTM with extended input (multiple) time-series SplineLSTM 5.2.1 

Clustering K-Means KM 4.1 

Delaunay Triangulation based clustering DTC 4.1 
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• Utilize LSTM architectures, taking into account a window of the orig-

inal time-series instead of an average of the values in that window;

see in §§ 5.2 and 5.2.1 . 

. Experimental evaluation 

In this section we perform a series of experiments on multiple (Ve-

ocity, RPM) time-series datasets, to evaluate the performance of the

ifferent methods presented in § 5 . The aim is to interpret the perfor-

ance of our estimators with respect to space partitioning, splines, and

eep Learning modeling, and compare them with popular baseline re-

ression techniques (e.g. Linear and Random Forest Regression) and the

nalytical method described in § 4 . 

.1. Methods summary 

Table 1 collects the various 𝑅𝑃 𝑀 prediction techniques by provid-

ng their complete name and abbreviation, as well as a pointer to the

ection where they are defined in this text. It also refers to the two clus-

ering techniques that we introduced in § 4.1 . 

.2. Dataset 

All the experiments were conducted on real data, using a dataset

omprising Velocity (Speed overground) and 𝑅𝑃 𝑀 values from two ex-

sting container ship vessels 5 with a carrying capacity of 10,000 and

000 TEU’s. 6 The values were acquired by exploiting the streaming and

rchestration capabilities of the DT framework proposed in § 3 and cor-

espond to a vast majority of different round-trip voyages at different

eriods and geographical locations. As a whole, the dataset covers a

ime span of one year for both vessels, (March 2019 - March 2020) with

pproximately 400,000 data points. In order to examine the statistical

ignificance of our results, we created 10 statistically independent sub-

ets, for each vessel, extracted from different time periods of approxi-

ately 5,000 data points, that cover 84 hours or 3.5 days of the vessel’s

rip. 

In Fig. 11 we visualize the majority of the round trip voyages con-

ucted by the two container ship vessels during one year, as well as a

napshot for one route visualizing the corresponding weather at a spe-

ific time and location during the vessel’s voyage. 

From these datasets, the 80% was used for training and the rest

or testing. Statistical independence was preserved between different

atasets with the use of the Kolmogorov-Smirnov test (KS-test). This is

 two-sided test for the null hypothesis that 2 independent samples are

rawn from the same continuous distribution. The dataset used in the

ontext of this work is available, in sanitized form, upon request to the

rst of authors. It consists of approximately 5 ∗ 10 4 observations of 𝑉 ,

𝑃 𝑀 , and their corresponding timestamp. 
5 In the next paragraphs we will refer to data and results corresponding to the 

rst and second container-ship with the CS 1 and CS 2 abbreviation respectively 
6 (Twenty-foot Equivalent Unit - unit of cargo capacity used for container 

hips. and terminals) 

l  

t  

l

11 
.2.1. Data cleaning 

The raw data, collected from the sensors of the vessel, are in time-

eries (minutely) form and tend to be “noisy ” and even erroneous in

ome cases. In order to remove noise, we employed a fit & filter tech-

ique that effectively “cleaned ” the data but at the same time kept the

ulk of information needed for training robust prediction models. Data

ltering was implemented in two stages. First, assuming that our dataset

ollows a normal-like distribution, we filter out data points that are out-

ide of the 95% confidence interval and keep values for each feature

hat lie within a 2-times standard-deviation band from the mean value.

hen we transform our dataset into 15-min rolling window averages in

rder to further smoothen out any spikes and outliers that occur in the

eature set from the sensors onboard ship. The raw vessel’s speed and

orresponding RPM collected from the sensors versus the mean values

nd 15 min rolling window averages are depicted in Fig. 12 . 

.3. Comparative analysis 

In this section we will demonstrate experimental results obtained

y utilizing the methods introduced in previous sections. At the end of

his section we will be able to draw significant statistically conclusions

ersus the following issues: 

✓ How the WBM of § 4 , combined with either KM or DTC, performs in

comparison with the rest of the ML and DL techniques proposed. 

✓ Best combination of clustering technique and ML regression method.

✓ Overall best method to utilize for 𝑅𝑃 𝑀 approximation. 

In order to comparatively evaluate the different approximation tech-

iques, we cross validate the performance of our estimators in all subsets

y calculating the Mean Absolute Error (MAE) in each one of them as: 

𝐴𝐸 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

|𝑦 𝑖 − 𝑥 𝑖 | (11)

here 𝑦 𝑖 is the prediction, 𝑥 𝑖 the true value and 𝑛 + 1 is the size of the

ataset. 

Then we compute the average MAE across all subsets. Table 2 7 re-

orts the results for all techniques, showing the average MAE values at

he 95% confidence interval. When a prediction method is combined

ith a clustering technique, MAE is reported for the best clustering

cheme. Since the best number of clusters may vary across subsets, we

eport the average number of clusters across the datasets. In the exper-

ments conducted for K-Means, the estimator’s performance was tested

n a fixed range of clusters (1 − 11) , whereas for Delaunay Triangulation

lustering the estimator’s performance was tested on a range of cut-off

alues from 0.2 to 1.4 that generates an arbitrary number of clusters on

ach run, varying from 1 to 19 clusters. 

The results in Table 2 show that the methods, which combine the

ocal models using weighted average ( wAvgNN ), tend to perform better

han the baseline ML regression models like LR, RF as well as SR. Also,
7 In Table 2 we showcase the best method with bold, the second best under- 

ined and all statistically significant results appear with a star symbol. 
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Fig. 11. Routes visualization. 

Fig. 12. RAW data values VS Mean values VS Rolling window 

average values. 

Table 2 

Average MAE & standard error in 𝑅𝑃 𝑀 values prediction for the different regression meth- 

ods (smaller values are better) and the optimal number of clusters. 

Mean Absolute Error (average) Number of clusters (average) 

K-Means DTC No clustering K-Means DTC 

LR 3.14 ± 0.1 3.2 ± 0.02 3.2 ± 0.01 5.34 19.30 

SR 2.76 ± 0.14 2.12 ± 0.56 ∗ 2.77 ± 0.093 6.60 8.23 

RF 3.33 ± 0.078 3.67 ± 0.036 2.36 ± 0.05 ∗ 5.67 4.20 

wAvgNN 2.43 ± 0.023 2.15 ±0 . 31 ∗ 5.38 ± 1.84 6.80 21.30 

BaseLSTM - - 4.35 ± 0.434 - - 

SplineLSTM - - 1.73 ± 0.477 ∗ - - 
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e  
here are certain estimators such as Random Forest (RF) that tend to per-

orm better without clustering. Another conclusion we can extract from

he above table is that Spline regression (SR) exhibits promising perfor-

ance. Especially, SR coupled with DTC (referred in next paragraphs

s SR 𝐷𝑇𝐶 ) results in much higher accuracy than any of the other meth-

ds when coupled with DTC. This result is aligned with pertinent litera-

ure that states a connection between Delaunay triangulation and splines

 Musin, 1997 ) and with our findings in § 4 , where we explored the ap-

roximation power of piecewise estimators constructed on arbitrary in-

ut space partitions to estimate RPM. Furthermore, overall SplineLSTM ,

eems to have the lowest MAE overall with wAvgNN coming second and

hen 𝑆𝑅 . Results and conclusions were derived after detailed evaluation

f all the methods on 10 different subsets of approximately 5000 obser-

ations. Statistical significance of the results was preserved, by utilizing

aired T-test between the lists of errors for the different methodologies

roposed. 

Taking into account the results depicted in Table 2 , we visualize, in

ig. 13 , the results for the two different clustering techniques for the
12 
eighted average NN ( wAvgNN ) and for the baseline regression meth-

ds SR, LR, RF. We can clearly observe that DTC works significantly bet-

er when coupled with methods that used Spline approximation either

irectly as in the WBM model (SR) or as in the weighted average deep

earning implementation wAvgNN . From the plots depicted in Fig. 13 , we

an conclude that there exists no trend between the number of clusters

nd the performance of the estimators that implies a certain monotonic

elationship (either positive or negative) among them. This claim is also

upported by conducting statistical significance evaluation (Spearman

orrelation test between the number of clusters and the average perfor-

ance of our estimators (MAE)), for 5 statistically independent subsets

or both K-Means and DTC. The Spearman correlation results are as fol-

ows: 

• K-means: correlation ≃ 0 . 05 & p -value ≃ 0 . 74 
• DTC: correlation ≃ 0 . 12 & p -value ≃ 0 . 34 

In Fig. 14 we depict the overall performance of the compared mod-

ls, on 10 statistically independent subsets. We combined every model
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Fig. 13. Models performance comparison through clusters. 

Fig. 14. Average performance comparison for estimators . 
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t

ith either K-means or DTri clustering and compute the Mean Abso-

ute Error (MAE) between the actual and predicted 𝑅𝑃 𝑀 values for

ach subset. Finally, we plot the distribution of average MAE values

n all clusters of each clustering scheme for all datasets. In order to

ompare the effect of clustering, in the same figure we also visual-

ze the distribution of average MAE values in each subset, either by

luster or in the subset as a whole. When clustering is applied the op-

imal number of clusters in terms of accuracy for either DTC or KM

s selected across all 10 different subsets. As we can readily observe

rom Fig. 14 in all methods, apart from RF, when clustering is ap-

lied, the performance of the respective model outperforms that of

he same model when ”trained ” in the dataset as a whole (lower MAE

alues). 

isualizing performance of the most prominent methods 

In the following, we showcase a snapshot of the average performance

or the top three estimators as presented in the experimental evaluation

ection above, across a test set of ≃ 1000 observations. The estimators

ere trained on a dataset of approximately 5 ∗ 10 3 observations repre-

entative of the most common states of a vessel during a voyage. For

AvgNN we achieved accuracy 95 . 86% with an optimal number of 7

lusters whereas for SR 𝐷𝑇𝐶 we achieved 92 . 41% accuracy with an opti-

al number of 8 clusters. SplineLSTM achieved 97 . 68% accuracy on this

articular test set. In Fig. 15 we provide an illustrative example of the

ctual performance of our estimators on a randomly picked voyage of

 days from the test set to visualize the accuracy of our estimators on

ifferent speed ranges. The estimates are extremely close to the actual

𝑃 𝑀 values but ultimately SplineLSTM is able to infer 𝑅𝑃 𝑀 values in

 more accurate manner than the other two methods. The bars on the

raph indicate the number of observations found for a particular speed

ange ( ± 0.5). 
13 
.4. Utilizing 𝑅𝑃 𝑀 predictions and vessel specifics to approximate FOC 

This section illustrates how a FOC estimate can be made on the ba-

is of the input (velocity measurements) and output (RPM) of the pro-

osed method, in conjunction with basic vessel’s particulars, and stan-

ard Marine-Engineering knowledge. The experiments that compare the

OC estimations with actual FOC data of a container ship for different

oyages, demonstrate the potential of the proposed method. 

In summary, the proposed FOC estimate can be written as: 

 𝑂𝐶 = 2 𝜋𝜌 ⋅ 𝑆𝐹 𝑂𝐶 ⋅𝐾 𝑄 ( 𝐽 ) ⋅
(
𝑅𝑃 𝑀∕60 

)3 
⋅𝐷 

5 , (12)

here: 

• 𝜌 is the sea water density ( ≈ 1026 𝑘𝑔∕ 𝑚 

3 ), 
• 𝑆𝐹 𝑂𝐶 is the Specific Fuel Oil Consumption of the Main Engine per

energy unit, which is available by the ship owner, 
• 𝐷 is the diameter of the propeller, and 
• 𝐾 𝑄 ( 𝐽 ) is the torque coefficient, depending on the so-called advance

coefficient 𝐽 , further analyzed in the sequel. 

f 𝑄 is the torque delivered by the Main Engine on the propeller shaft,

hen for the Wageningen B-series of propellers ( Oosterveld & van Oos-

anen, 1975 ), which are widely used by the Marine-Engineering practi-

ioners, regression analysis of a large volume of experimental data pro-

uced by the Netherlands Ship Model Basin (NSMB) in Wageningen via

pen-water experiments with 120 propeller models, led to the following

egression formula: 

 = 𝐾 𝑄 ( 𝐽 ) 𝑛 2 ⋅𝐷 

5 , 𝑛 = 𝑅𝑃 𝑀∕60 . (13)

Here 𝐾 𝑄 ( 𝐽 ) is a polynomial function of 𝐽 ( Bernitsas, Ray, & Kinley,

981 ) provided some further propeller particulars are known, such as

he pitch over diameter ratio 𝑃 ∕ 𝐷, the number 𝑧 of propeller blades and

he blade-area ratio 𝐴 ∕ 𝐴 . 
𝐸 0 



D. Kaklis, I. Varlamis, G. Giannakopoulos et al. International Journal of Information Management Data Insights 3 (2023) 100178 

Fig. 15. Performance comparison between SplineL- 

STM - wAvgNN - SR 𝐷𝑇𝐶 . 

Table 3 

Computational performance of the FOC-estimate formula (12) . 

Total Act FOC(MT) Total Pred FOC(MT) FOC Abs Diff(MT) FOC Perc Diff

[ CS 1 ]: SUEZ - ROTTERDAM 1100.62 1104.59 3.97 0.35 

[ CS 1 ]: TANGER MED - SUEZ 411.7 413.42 1.72 0.41 

[ CS 2 ]: TAMPA - TANGER MED 802.01 804.41 2.4 0.24 

[ CS 2 ]: PUSAN - PANAMA 489.27 490.86 1.59 0.32 

Total 2812.62 2813.28 9.68 1.32 
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The primary parameter for 𝐾 𝑄 ( 𝐽 ) is the so-called advance coefficient

 = 

𝑉 𝐴 

𝑛𝐷 

, (14)

here 𝑉 𝐴 is speed of advance of the propeller relative to the water in

hich it is working, which is lower than the speed of the vessel 𝑉 . This

s expressed by 

 𝐴 = 𝑉 (1 − 𝑤 ) , (15)

here 𝑤 is referred to as the wake fraction coefficient. For ships with

ne propeller, as it in our test case, 𝑤 is normally in the range of 0.20

o 0.45. Furthermore, since containerships do not have large block co-

fficient, we have used values 𝑤 in [0 . 25 , 0 . 30] reflecting the fact that

he distribution of the water velocity around the propeller will not be

trongly non-homogeneous. 

On the basis of the above discussion we conclude that: 

1. Monitoring the velocity 𝑉 and estimating 𝑅𝑃 𝑀 by employing the

techniques ( SplineLSTM ) proposed in the previous sections, we have

a good overview of the fluctuation of the advance coefficient 𝐽 ,

which constitutes a key indicator of the vessel’s propulsion system

performance. 

2. Using basic propeller particulars and the polynomial regression re-

sults provided by Bernitsas et al. (1981) , formula (12) enables an

easy and robust estimation of FOC. 
• To validate this assertion, we provide in Fig. 16 and Table 3

the actual and predicted average FOC for the two container-ship

vessels ( CS 1 , CS 2 ) as calculated by our method, after adjusting

transitional speeds (acceleration, deceleration) for four different

voyages that were not included in the training set. Red circles

indicate number of observations for a specific range of velocity

( 𝑉 𝑖 ± 0 . 25 ) during a voyage. 

. Contributions to literature & practical implications 

In the context of this work, we demonstrated a prototype of a Digital

win-(ing) MIS for the maritime sector that transcends beyond State-Of-
14 
he-Art (SOTA) solutions by employing a multifaceted ecosystem for op-

rational optimization. We discussed the proliferation and importance

f digitization in the waterborne industry and argued how traditional

IS can be used as the foundation for an enhanced, versatile ecosystem

o achieve carbon-neutral ship operations. To this end, we extracted im-

ortant requirements by acquiring real word data corresponding to two

ifferent Living Labs (LLs; container vessels, utilized in § 6.4 ), in order

o fully comprehend and assimilate the broad range of specifications

equired, which outlined the main components of the Operational Op-

imization digital suite. This adaptive ecosystem of algorithms, models,

nd data sources aims to vastly automate the decision-making proce-

ure and offer the ability to shipowners and external vendors to select

ailor-made mitigation strategies, depending on their own set of needs

nd long terms goals. 

A thorough literature review and market analysis concerning exist-

ng frameworks (MIS) for operational optimization (§ 2 ) allowed us to

dentify the gaps and highlight the added value of the envisaged digital

latform, showing the way beyond SOTA solutions. Requirements elici-

ation from the two LLs established the cornerstone of the platform and

efined available resources in terms of infrastructure for data collection

nd storing, as well as regarding model employment and inference. By

perating the two LLs on a day-to-day basis, an appropriate roadmap

as established defining for each vessel the short and long-term goals

emission reduction, power management, charter party compliance) as

ell as the most suitable, in terms of financial and technical viability,

itigation solution. To this end, a global, cross-vessel, use case was de-

ned; that of Emission Control and more specifically FOC approximation

§ 2 ). Utilizing the aforementioned prominent working example, we out-

ined the backbone to realize the first version of the Digital Twin MIS

dapted to this specific use case. 

The technical criteria and infrastructure in terms of services, frame-

orks, and appropriate models were defined in alignment with the

forementioned use case and an adaptive predictive module for FOC

stimation was demonstrated (§ 5.2.1 ). In more detail, we put a strong

mphasis on the theoretical aspect of the entailed work, by demonstrat-

ng an easy-to-deploy, in terms of feature acquisition, Grey Box Method
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Fig. 16. Actual/Predicted FOC(lt/min) comparison in different voyages . 
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GBM) for FOC estimation (§§ 4 –5 ). This approach complements the

omputational power and approximation capabilities of DL (Deep Learn-

ng) models with standard marine engineering theory to offer a novel

daptive predictive scheme for emission control and regulatory adher-

nce. 

This holistic versatile platform, in conjunction with the GBM pro-

osed, realizes a multi-tenant architecture enabling cross-vessel, model

eployment, and actuation by establishing a real-time vessel-to-shore

nd vessel-to-vessel communication. Immediate planning and next steps

ere also defined, including the implementation of a Decision Support

ystem (DSS) intercommunicating with the platform to evaluate possi-

le solutions via a user-defined approach. 

. Conclusions and future work 

The motivating real-world problem of this work is the optimization

f vessel routing, described in the form of geospatial data, through mini-

ization of its FOC (Fuel-Oil Consumption). Via reviewing the pertinent

iterature on the subject and conducting initial experimentation we con-

luded that the problem could be handled efficiently, if a robust model

or predicting the 𝑅𝑃 𝑀 (revolutionary speed of the main engine) of a

essel, moving with known speed 𝑉 , were available. Furthermore, ac-

ess to real industrial data obtained from measurements on-board ships,

ndicates a strong linear correlation between 𝑅𝑃 𝑀 and 𝑉 on specific

ime intervals during a voyage. However, non-linearities do also emerge

uring other intervals. 

On the basis of the above, we have been led to the idea of developing

n 𝑅𝑃 𝑀 predictive model that decomposes the domain in correlated

ub-domains with respect to velocity 𝑉 (§§ 4 ). In this connection, we

pted for Spline Regression (SR) in order to approximate the underlying

unction 𝑅𝑃 𝑀( 𝑉 ) on each subdomain, as splines are by their nature
15 
ontinuous piecewise polynomials appropriate for approximating func-

ions with varying behavior in partitioned domains. We also examined

inear regression (LR), Random Forest (RF) and a baseline Neural Network

NN) . 

In order to combine splines with Deep Learning, we conducted an

xploratory analysis by building two different Neural-Network (NN) ar-

hitectures, that utilize spline regression in two different ways. The first

rchitecture employs the deep learning equivalent of the WBM (White

ox Model) described in § 4 by consolidating different estimators trained

n different partitions of the input set, in a weighted average predic-

ive scheme. Lastly, we implemented two different LSTM-based (Long

hort-term memory) NN architectures: one baseline LSTM and another

ne that introduces a Spline-informed embedding space based on the

sychics-informed WBM model. 

To the best of our knowledge it is the first time that FOC approxima-

ion is addressed, under the prism of a fully automated digitized MIS, as

he one proposed in the context of this work. Furthermore the method-

logy employed, leverages the approximation capabilities of ensemble

eep learning, with standard marine engineering theory to conclude to

 consolidated, physics-informed, FOC predictive scheme. The reduced

nd easily acquired feature set constitutes another novelty, as it auto-

atically renders the proposed methodology, a generic, applicable to

ll vessels approach. Conventional methods found in pertinent litera-

ure concerning FOC estimation are vessel and/or data dependent, and

ack the theoretical support and bench-marking criteria of methods that

xploit and consolidate the backbone of AI approximation theory and

aval engineering. Finally, the envisaged framework as a whole, con-

titutes a pivotal and cross sectoral venture that aims to exploit data

rom different stakeholders attached to the waterborne sector and en-

ble sensing and control actuation on the vessel, by evaluating the pro-

osed methodology in a real world setting. 
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Summarizing the obtained results, we see that most of the methods,

rained on sub-spaces (clusters) and created through clustering (k-means

r DT-based algorithms), achieve higher accuracy compared to a generic

R or NN model. Especially, when we combine the approximation power

f all local models with the global model on a weighted average predic-

ive scheme, we are able to achieve higher accuracy than simply aver-

ging the most suitable local estimator with the global model. Further-

ore, combining the triangulation with piecewise regression, showed

romising results. 

Besides expanding the scale and variability of our experiments with

ew datasets, our short-term objective will focus on investigating the

ffect of hyper-parameters and options (including distance metric for

he clustering), as follows: 

• the optimal cut-off value for the 𝐷𝑇 -based clustering algorithm and

generally the optimal number of clusters for either of the two pro-

posed clustering methods; 
• the distance metric, since so far only Euclidean distance has been

tested; 
• the population and the appropriate placement of the knots used to

approximate the underlying function on each partition; 

Another important direction for our research is to address the is-

ue of ’lack of historical data’ in the maritime industry by employing a

knowledge sharing’ platform across vessels . The main approach will

e to exploit the Digital -Twining framework proposed in the context of

his work, to train our proposed methods in a continuous setting (incre-

ental learning) for different types of fleets (Containers-Tankers-LNG-

oRo) utilizing as input an expanded feature set consisting of weather

eatures and a variety of vessel-specific parameters(propeller and hull

eometry). This generic model will be adjusted initially based on these

essel specifics features in order to provide accurate FOC predictions for

hips of the same type that are missing data (transfer learning). In a lat-

er stage the model will be further evaluated and refined, ON EDGE , by

tilizing another core functionality of the DT framework ( Control Actua-

ion layer ). With this methodology we aim to assemble a ‘Vessels Specific

nduced, FOC Predictive Library’ of generic, physics-informed models, for

ifferent types of vessels. The core functionality of this generic, physics-

nformed cross vessel library conceptualizes the emerging concept of

he so called Digital Twin in the shipping industry, as described in the

ontext of this work. 
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