
The 8th International Symposium on Ship Operations, Management & Economics (SOME)
7-8 March 2023, Athens GR
Copyright © 2023 Society of Naval Architects and Marine Engineers (SNAME)
www.sname.org

Time Series Analysis for Digital Twins in Green Shipping

Lazaros Avgeridis1 (V), Konstantinos Lentzos1 (V), Dimitrios Skoutas1 (V), Ioannis Z. Emiris1 (V)
1. ATHENA Research Center

A promising way for the waterborne industry towards decarbonization and emissions reduction is through
digitalization and in particular via Digital Twins (DTs) technology. In this context, the DT provides insights for
optimal decision-making, predicting potential future events, or even detecting irregularities in the behavior of the
ship to reduce its carbon emissions and energy consumption. To achieve this, we propose an architecture for
automated data capture, processing, and analysis. The analysis component of this infrastructure leverages machine
learning (ML) algorithms for time series data, such as anomaly detection and forecasting. Importantly, to understand
how these algorithms make a certain prediction we also provide a detailed look at current approaches used to
interpret these models. Finally, we demonstrate a practical use case, where time series analysis can prove especially
useful when applied to real-world vessel data.

KEY WORDS: digital twins; time series; anomaly detection;
forecasting; explainability; vessel; machine learning

INTRODUCTION
Internet-of-Things (IoT) devices generate increasingly massive
amounts of time series data. IoT technology is becoming
ubiquitous in many industries including shipping, retail,
healthcare, manufacturing, transportation, agriculture, utilities,
automobile, etc. All of these domains involve some kind of
temporal measurements, usually via sensors, censuses,
transaction records, etc., so the capture of a sequence of
observations indexed by time stamps is crucial for providing
insights into the past evolution of some measurable quantity.
More specifically, a time series is a sequence of data points
(observations) ordered in time. Typically, time is treated as a
discrete variable in this context. The pervasiveness of time
series has also generated an increasing demand for performing
various analysis tasks on time series data, including
visualization, discovery of recurrent patterns, clustering,
anomaly detection, segmentation, forecasting and data
simulation among others.

Anomaly detection (also called outlier detection) for example
represents one of the most prominent fields of time series
analysis. Anomaly detection is central to comprehending what is
the normal behavior of data captured by an IoT system and
detecting instances that deviate from the norm. The data are
considered normal if they obey the usual operating
characteristics for that specific system. It is reasonable to
assume that usual operation of a system can change over time
and this can happen for a variety of reasons.

Forecasting is another important area of time series analysis, as
it is of paramount importance in many domains: in meteorology,
to guide informed decision-making for air and maritime
navigation; in digital transactions, to detect abnormal or
fraudulent situations; in stock investing, to predict the future
trajectories of stocks of interest; in medicine, to predict the
spread of a disease, estimate mortality rates or assess
time-dependent risk. In essence, forecasting is based on the
following principle: knowing the past behaviors of a given
system, it is possible to make predictions on its nearby or
long-term behaviors.

A time series represents the temporal evolution of a dynamic
system that one seeks to describe, explain and predict. One such
system could be a moving object, e.g., a private vehicle, an
airplane or a vessel. In fact, there have been many recent
attempts to aid the maritime industry to enter a new phase by
gradually adapting to modern digitization principles. In
particular, this can be achieved via Digital Twins (DTs)
technology (Leandro 2021; Danielsen-Haces 2018; Grange
2018; Bole 2017). The general conception of a digital twin has
three core elements: the physical entity (vessel), the digital or
virtual entity and the bidirectional communication that is
established between these two entities. The whole purpose of
this technology is to maintain a virtual system that basically
mirrors the physical one. In practice, this is done by
continuously updating the state of the virtual entity using
measurements coming from the physical entity. The collected
measurements are then processed and analyzed to support
decision making, which leads to actions applied to the
waterborne system to optimize its operation.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 1
Lazaros Avgeridis

http://www.sname.org

To be more precise, vessels that adhere to this framework are
equipped with onboard sensor technologies that can measure
critical quantities regarding the status of the vessel in question,
such as speed, coordinates, fuel consumption, engine
temperature, etc. Importantly, these sensor updates are
transmitted in real-time.

The main goal of many of these efforts is to allow ship
designers, builders and operators to collaborate on reducing
costs, improving efficiency, boosting safety and most
significantly, reducing ship emissions to the natural world, thus
aiming to achieve decarbonization in the long term. This can be
achieved by leveraging an appropriate technological
infrastructure, which will collect the captured sensor
observations and analyze them to provide valuable feedback to
the human observers. This will enable stakeholders to make
environmental-friendly decisions based on the provided
information. For example, potential alerts and insights from
such a system could be directed towards the captain to adjust the
speed and direction of the ship in a way that would optimize fuel
consumption.

This paper is organized as follows: Section 2 presents our
proposed architecture for collecting, storing, processing and

analyzing time series data. Section 3 is devoted to two
extensively studied areas of time series analysis, anomaly
detection and forecasting, along with insights into the
methodology used to explain the results of the most widely used
machine learning models. Section 4 demonstrates the results
produced by 2 time series analysis algorithms applied on real
world vessel data. Finally, Section 5 concludes our work by
identifying future research directions in the field of time series
analysis.

ARCHITECTURE OVERVIEW AND MAIN
COMPONENTS

In this Section we describe a high-level architecture for storing,
processing, and analyzing time series data in a scalable and
resilient manner. Such an infrastructure can generate real-time
actionable insights extracted from the captured data, in order to
guide stakeholders toward avoiding potential risks and making
better decisions. In principle, this system architecture can be
connected to any data source generating real-time events and
immediately start producing meaningful results.

The architecture of the proposed pipeline is illustrated in Fig. 1.
It consists of 3 main components: the data source, the messaging
system, and the data processing and analytics engine. It should
be noted that the architecture presented here is still under

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 2
Lazaros Avgeridis

development and that it drew inspiration from a preliminary
version considered in the context of the European project
“Digital Twins for Green Shipping” (DT4GS). As such, a lot of
technical details regarding for instance the transmission,
collection and storage of the data are yet to be configured.

Data Source

The pipeline will be powered by vessel data that arrive in the
form of sensor observations. These observations are captured by
onboard sensor technologies available on the ship and may
measure quantities such as velocity, fuel consumption,
acceleration, engine temperature etc. Since these observations
are ordered based on time and arrive at fixed time intervals t, a
straightforward way to model them is through time series data.
Since multiple sensor updates are received at each timestamp,
the produced time series are characterized as multivariate.

This time series data can either arrive in real-time, as they are
produced, and be sent directly to the Messaging Server (middle),
or be initially stored in an external database and then sent to the
Messaging Server. In both cases, data collection and
transmission will be handled by the appropriate infrastructure
installed on the ship. It is also expected that there will be
incorrect, corrupted, or incomplete data points within the
captured observations; hence, a data cleaning process is
typically necessary prior to any analysis.

Messaging System

Event streaming platforms play a central role in ingesting,
storing, and processing real-time data in a scalable and resilient
manner. In our case, an event (also record or message) is a
notification that "something happened" in the vessel, i.e, an
update in the state of the ship. An event stream is a continuous
unbounded series of such events. The start of the stream may
have occurred before we started processing the stream. The end
of the stream is at some unknown point in the future, i.e when
the vessel reaches a port. Each event in a stream carries a
timestamp that denotes the point when the event occurred.
Events are ordered based on this timestamp. In general, the
definition of time series data aligns with that of event streams.

Typically, these systems function according to the popular
producer-consumer paradigm. Simply put, in the core of this
paradigm there are 2 (computer) processes, one that sends
events (or messages), also called the producer, and one that
receives events (or messages), also called the consumer.

There are several reasons to utilize such a system in our
architecture. Firstly, these systems completely decouple
producers and consumers, meaning that producers are not aware
of who is going to consume the data that they are producing.
Conversely, consumers are not aware of who produced the data
they are consuming. That enables adding or removing

components from/to our architecture without significantly
affecting existing ones. Secondly, event streaming platforms
provide scalable and durable storage for real-time data, as they
are distributed systems, purposely built to ingest millions of data
records per second. The data are then stored in fault-tolerant
storage to keep them safe from data losses.

In our pipeline, the Messaging System, which will be located on
a central server, communicates with both the Data Source (left)
and the Data Processing and Analytics Engine (right). More
specifically, incoming events originating from the data source
are initially written to the Messaging System’s storage. Then,
these events are read from the same storage location and used as
input to the data analytics component. The results of each data
analysis run are written back to the Messaging System, which is
also responsible for forwarding them to third-party applications
or UI dashboards. In addition, the Messaging System is also
connected to a persistent storage, which serves the purpose of
backing up our time series data for future use.

One of the most widespread event streaming platforms today is
Apache Kafka (kafka.apache.org). Kafka is an open-source
software program that lets users store, read, and analyze
streaming data. As a distributed system, Kafka can run on
several servers to leverage different servers’ processing power
and storage capacity. Certain key features of Kafka include
scalability, fault tolerance, durability, reliability, zero downtime,
performance, replication and extensibility. Another well-known
alternative is RabbitMQ (rabbitmq.com), an open-source
message broker that is lightweight and supports asynchronous
messaging services. RabbitMQ runs on different operating
systems and cloud infrastructure and can also be deployed in a
distributed environment for high availability. Moreover, it has a
flexible plug-in approach and a variety of tools to support
continuous integration and operational metrics.

Data Analysis

The most crucial component in the pipeline is the Data
Processing and Analytics Engine and is located on the same
central server as the Messaging System. This part involves a
multi-step procedure, which includes applying data
pre-processing, analytics and evaluation operations in
succession. In essence, the desired outcome here is to employ
techniques that will enable us to detect irregularities in the
sensor observations or predict the future behavior of the vessel.
The underlying data analysis is executed by a library of
available models for time series analysis. It is also essential to
track the performance of these models so that we can gradually
enhance the model selection process by examining previous
analysis runs.

Once the messaging system sends the data in raw form, the data
processing and analysis engine is triggered. Initially, the data
pass through two separate pre-processing stages. The first stage

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 3
Lazaros Avgeridis

is Data Cleaning. Essentially, its purpose is to perform detection
and removal of erroneous values, as well as missing values
imputation. Subsequently, the cleaned data are in the appropriate
form to be sent to a persistence storage through the Messaging
System for later use, may it be for future comparisons or simply
for creating a large database of historical observations. The
second stage involves Preprocessing, and is more
model-specific, meaning that it applies extra data
transformations required by the selected model to run, such as
normalization, dimensionality reduction etc.

A question that emerges here is how exactly to choose the most
fitting model(s) for each analysis run. The answer is given by
consulting the ongoing “Performance Tracking” component,
which stores statistics regarding the performance of previous
models’ execution. According to this information, the best
performing models are chosen and configured in the “Model and
Parameters Selection” subtask and loaded by sending a request
to the externally maintained “Model Registry & Metrics”
logging system. If no past information is available related to
model performance, then for the initial analysis all models may
be used in order for the performance tracker to start collecting
statistics. Moreover, different models often have different
constraints on the data format and characteristics they expect to
receive as input, which may affect their applicability or impact
their performance. Consequently, the choice of model also
influences the operations taking place in the “Data Cleaning”
and “Preprocessing” subtasks.

Up to this point, both pre-processing steps have been
successfully applied on the data and the most appropriate
model(s) have been selected for proceeding with the actual
analysis. In this work, we are focusing specifically on two very
widely studied and used time series analysis tasks, namely
anomaly detection and forecasting., which we further discuss in
more detail in Section 3. Depending on the specific type of
problem we wish to tackle, we can select the appropriate subset
of models and conduct the “Analysis” step. As input to the
selected models, we use the cleaned data we prepared in the
previous steps.

Once the analysis is completed, we collect the output of our
models and perform a final “Validation” step. At this stage, we
are interested in measuring the quality of the produced outputs,
i.e. the predictions in the case of Machine Learning methods, by
introducing a set of metrics (e.g., accuracy) or simply reporting
experiment-specific information such as whether a model
managed to process the entire dataset or not, execution time,
memory requirements etc. These statistics are also sent to the
“Performance Tracking” service, which will guide the model
selection process in future analysis experiments, as well as a
remote “Reporting” server, which compiles all validation results
and displays them in an easy to comprehend graphical
environment, intended for those who manage the data analytics

engine. Finally, the predictions of our models are sent back to
the Messaging System, as mentioned previously.

Evidently, the “Analysis” subtask relies heavily on a library of
models that perform the data analysis. To properly track the
performance of the models and their version history, we
consider third-party software that could assist us in managing
their whole lifecycle. After all, current machine learning
methods often require thorough experimentation. This translates
to training a particular model instance, usually for prolonged
periods of time, by feeding it with a large set of data
observations, then evaluating the model and measuring its
performance by using standardized metrics, and finally trying to
interpret the results and draw valid conclusions.

There are several tools available for tracking and managing
machine learning experiments, which can be generally divided
into two categories : (a) experiment tracking only and (b)
management of the entire lifecycle. For example, Weights &
Biases (wandb.ai) is a popular machine learning platform
belonging to the former category and designed mainly for
experiment tracking, even though also capable of (limited)
dataset versioning and model management. Its key features
include a user-friendly and interactive dashboard, which allows
users to visualize and compare results of the model training
process. On the other hand, there exist solutions such as the
open-source platform MLflow (mlflow.org) that belong to the
latter category and hence offer both experiment tracking and
reproducibility along with model deployment and central
storage. MLflow in particular supports logging of various
experiment metadata, packaging ML code in a format to
reproduce runs on any platform, deploying ML models and
storing them in a central repository.

TIME SERIES ANALYSIS

In this Section we are going to examine 2 broad areas of time
series analysis : (i) anomaly or outlier detection and (ii)
forecasting. In addition, given that a lot of methods employed in
these two areas make use of machine learning models, we deem
necessary to understand both how and why a model makes a
certain prediction. Thus, a summary of approaches for
explaining machine learning models is presented last.

Anomaly Detection
An anomaly can be thought of as an unexpected change in the
state of a system, which is outside of its local or global norm.
There are three general types of time series anomalies
distinguished in the literature, in particular point, contextual,
and collective anomalies (Pang 2021). We briefly outline them
below:

Point anomalies refer to data points that deviate remarkably
from the rest of the data. Point anomalies usually make up for a
small percentage of the total data observations. The affected

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 4
Lazaros Avgeridis

system after experiencing these short anomaly intervals returns
to its previous normal state. Point anomalies can also represent
statistical noise or noise produced by faulty sensing equipment.

Contextual anomalies refer to data points within the expected
range of the distribution, but which deviate from the expected
data distribution, given a specific context. Contextual anomalies
if taken in isolation may be within the range of expected values,
but when taken in the context of the surrounding observations
constitute anomalies.

Collective anomalies refer to sequences of points that do not
repeat a typical previously observed pattern. Individual
observations within a collective anomaly may or may not be
anomalous, it is only when they appear as a group that they
arouse suspicion.

The first two categories, namely, point and contextual
anomalies, are referred to as point-based anomalies. whereas,
collective anomalies are referred to as subsequence anomalies.

Anomaly detection problems are supposed, by definition, to
handle and process unpredictable rare events characterized by
many unknown factors such as their structures, distributions and
irregularities. Anomalies are typically rare data instances,
contrasting to normal instances that often account for an
overwhelming proportion of the data. In (Pang 2021), authors
discuss the main challenges in anomaly detection problems. In
particular, they discuss about low anomaly detection recall rates
(high false positives), the need for handling high dimensional
data, noise-resilient models and detection of complex anomalies
such as subsequences anomalies and detecting anomalies in a
more contextual setting by considering two or more data
sources.

In (Schmidl 2022), the authors categorize the 71 algorithms
studied using various criteria. One viable categorization is by
considering the method family into which each algorithm can be
categorized. These method families characterize the algorithms
by their general approach of determining the abnormality of
specific points or subsequences within the time series. The
resulting six method families are the following: (1) forecasting
methods, (2) reconstruction methods, (3) encoding methods, (4)
distance methods, (5) distribution methods, and (6) isolation tree
methods.

Anomaly detection algorithms can also be classified by their
learning type, i.e unsupervised, supervised and semi-supervised.
However, both (Pang 2021) and (Schmidl 2022) point out that
supervised learning approaches are quite unpopular in practice
and thus the majority of techniques developed in anomaly
detection research is based mainly on semi-supervised and
purely unsupervised settings and methods. This is due to the fact
that labeled training data with both normal and anomaly classes
are quite restricted and rare in real-world scenarios. It is difficult

and costly to collect labeled anomalies or annotate them, and
even if the instances are labeled the method will suffer from
serious class imbalance issues. Consequently, for the rest of this
section we focus on recent unsupervised techniques for
detecting anomalies in time series data. Such methods can be
used to populate the models registry mentioned in Section 2.3
with a pool of available anomaly detection algorithms for time
series data. Moreover, we outline several recent benchmarks,
which can be used to evaluate and compare the performance of
these algorithms, thus bootstrapping the metrics registry and
providing guidance for model selection and parameter tuning.

Unsupervised Methods do not require a set of labeled samples
to fit the parameters of a particular machine learning model. An
unsupervised subsequence anomaly detection approach for data
streams is proposed in (Boniol 2021) called SAND (Streaming
Subsequence Anomaly Detection). SAND supports real-time
analytics, as the algorithm is online and does not require access
to the entire dataset. Anomalies are detected based on their
distance to a data structure that represents normal behavior.
Moreover, SAND does not require domain knowledge, and thus
can detect domain-agnostic anomalies. Finally, the algorithm is
able to adapt to distribution drifts, i.e., to changes in the data
generation process.

Another state-of-the-art unsupervised anomaly detection method
is proposed in (Campos 2022), which uses autoencoder
ensembles. The ensemble employs multiple basic anomaly
detection models built on convolutional sequence-to-sequence
autoencoders. The idea behind using autoencoders in anomaly
detection is summarized below. An autoencoder consists of an
encoding phase that compresses a time series T into a compact
representation and a decoding phase that reconstructs an output
time series T’ from this representation. The representation is
only able to capture patterns that reflect normal behavior in the
original time series and not anomalies. The difference between
observations in T and in T’ is called the reconstruction error.
Intuitively, the higher reconstruction error which means less
likely to be from the input distribution, the higher the anomaly
score. A threshold can be set to discriminate anomaly from
normality. The autoencoder ensemble the authors use employs
multiple autoencoders to avoid overfitting.

Anomaly detection based on transformers has been introduced
as for example in (Tuli 2022). Transformer models proved to be
more efficient than Long short-term memory (LSTM) networks,
mostly due to parallel computing in their architecture. In (Tuli
2022), authors proposed to combine transformers with neural
generative models for better reconstruction models in anomaly
detection. In particular, they propose an adversarial training
procedure to amplify reconstruction errors. A form of
adversarial training, a paradigm utilized when training
Generative Adversarial Networks (GANs), is processed by two
transformer encoders and two transformer decoders to gain

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 5
Lazaros Avgeridis

stability. More methods about using transformers in anomaly
detection settings can be found in (Wen 2022).

Benchmarking Toolkits were created to satisfy the demand for
commonly accepted ways to compare and analyze the
performance of anomaly detection approaches, since research in
this area is still very active.

The process of picking the most suitable detection algorithm for
a given problem is rarely straightforward. This is due to the fact
that many algorithms are remarkably heterogeneous in their
detection approaches and the current number of proposed
algorithms is large. What makes the necessary evaluations even
harder is the limited collection of publicly available datasets, a
careful consideration of runtime and quality aspects, and the
need to evaluate a multitude of specific properties including
anomalies that are uni-/multi-variate, point/sequence,
unique/repeating, shape/magnitude etc. anomalous.

One solution to the above problem is TimeEval (Wenig 2022).
TimeEval is an extensible, scalable and automatic benchmarking
toolkit for time series anomaly detection algorithms. It includes
an extensive data generator and supports both interactive and
batch evaluation scenarios. TimeEval is written in Python and
consists of four major components: a dataset generator called
GutenTAG, the core evaluation engine called Eval, a Python
API, and a respective GUI built on top of the API. TimeEval
offers configuration options and user-defined code/plugins to
incorporate evaluation settings. It can execute custom
algorithms and work with external datasets.

Another alternative proposed in (Khelifati 2021) is VADETIS
(Validator for Anomaly Detection in Time Series), a graphical
evaluator for anomaly detection techniques. VADETIS allows to
visualize time series data, perform anomaly detection in a
supervised setting, generate anomalies by specifying their type,
scale and frequency. Finally after choosing a performance
metric, VADETIS evaluates a set of detection techniques,
compares their performance, and recommends the optimal
technique. Vadetis is implemented as a web application with the
Python Django framework.

In (Paparrizos 2022) an extensive benchmark, TSB-UAD, is
proposed to evaluate univariate time-series anomaly detection
methods. The authors identified, collected and processed 13766
time series with labeled anomalies spanning across multiple
domains, applications, anomaly types, and anomalies of
increasing difficulty. Algorithms ranked high in TSB-UAD are
expected to demonstrate good performance when applied in a
new context. More specifically, TSB-UAD consists of three
dataset categories: public, artificial and synthetic.

Theseus (Boniol 2022) is a web application developed using
Python and the Dash framework. It is based on TSB-UAD and
helps users to navigate and compare several anomaly detection

methods as well as visualizing and evaluating their methods’
outcomes.

Finally, based on the taxonomy of anomalies, Lai (2021)
presents a general synthetic benchmark with 35 corresponding
synthetic datasets and 4 multivariate real world datasets from
different domains to evaluate anomaly detection algorithms.

Forecasting
Traditional time series forecasting methods based on probability
and statistics have achieved great results in real-world
applications They can be generally divided into linear and
nonlinear models, with linear models mainly including:
autoregressive models (AR), moving average (MA) models,
autoregressive moving average models (ARMA) and
autoregressive integrated moving average (ARIMA) models.
Classic nonlinear models mainly consist of Threshold
Autoregressive (TAR) models, Constant Conditional Correlation
(CCC) models and conditional heteroscedasticity models. In
addition, there are some important classical prediction methods
based on exponential smoothing, such as: Simple Exponential
Smoothing (SES), Holt’s linear trend method, Holt-Winters’
multiplicative method, Holt-Winters’ additive method and
Holt-Winters’ damped method. For a more detailed presentation
of conventional forecasting approaches, we refer the interested
reader to the following surveys: (De Gooijer 2005), (Liu 2021),
(Dama 2021).

Nevertheless, in the following we focus on more recent methods
that employ Machine Learning, and in particular deep learning,
techniques for time series forecasting. As in the case of anomaly
detection discussed above, such methods could be used to
populate the model registry, offering a suite of time series
forecasting algorithms.

Machine Learning Architectures for Time Series Forecasting
are particularly suitable for finding the appropriate complex
nonlinear mathematical function to turn an input into an output.
Hence, machine learning models provide a means to learn
temporal dynamics in a purely data-driven manner.

Artificial Neural Networks (ANNs) can be employed for
nonlinear processes that have an unknown functional
relationship and as a result are difficult to fit. The main concept
with ANNs is that inputs are passed through one or more hidden
layers each of which consists of hidden units, or nodes, before
they reach the output variable.

In time series forecasting, as in other domains, the emergence of
competing neural network architectures has relegated simple
ANNs to the background.

Convolutional Neural Networks (CNNs) are a specific kind of
deep neural networks, proposed for and mostly dedicated to
image analysis and aimed at preserving spatial relationships in
the data, with very few connections between the layers. Having

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 6
Lazaros Avgeridis

connections from all nodes of one layer to all nodes in the
subsequent layer, as in regular ANNs, proved extremely
inefficient and thus CNNs arose from the observation that a
careful pruning of the connections, based on domain knowledge,
boosts performance.

Although initially designed to handle two-dimensional image
data, CNNs can be used to model both univariate and
multivariate time series. A one-dimensional CNN will just
operate over a sequence instead of the usual matrix input. More
importantly, CNNs naturally lend themselves to process
multivariate time series. A multivariate time series will be fed to
the CNN as various vectors corresponding to the initial
channels.

Recurrent Neural Networks (RNNs) were designed to handle
sequential information (Lipton 2015). Typically, RNNs are
capable of making predictions over many time steps, in time
series. An RNN achieves the same task at each step (with
varying inputs): the sequence (x1, x2 , · · · , xt, xt+1, · · ·) is input
to the RNN, element by element (one step at a time).

For instance, the usage of an RNN-based architecture for
multivariate time series forecasting is demonstrated in
(Munkhdalai 2019). In particular, the model called AIS-RNN,
consists of two main components: an encoding network and a
forecasting network.

Long short-term memory networks (LSTMs) are the most
widely-used subclass of RNNs, as they perform better than
RNNS in capturing long dependencies. LSTMs are intrinsically
RNNs in which changes were introduced in the computation of
hidden states and outputs, using the inputs. They were
developed to address some limitations that occurred during the
training process of regular RNNs.

Transformers, like RNNs, were designed to handle sequential
data and tackle problems in natural language processing (for
instance, translation). Transformers were repurposed to address
forecasting in time series. The encoder and decoder form the
two parts of the transformer’s architecture.

The encoder mainly consists of an input layer, an input
encoding, a positional encoding mechanism, and a stack of
identical encoder layers. In the seminal work of (Vaswani 2017),
the decoder is composed of an input layer, an input encoding, a
positional encoding mechanism, a stack of identical decoder
layers and an output layer.

Optimal Forecasting Model Selection Autoforecast (Abdallah
2022) is a meta-learning approach that allows for the quick
inference of the best time-series forecasting model for an unseen
dataset. Given a new time series dataset, AutoForecast selects
the best performing forecasting algorithm and its associated
hyperparameters without having to first train or evaluate all the
models on the new time series data to select the best one. The

meta-learner is trained on the models’ performances on
historical datasets and the time-series meta-features of these
datasets.

Another meta-learning approach is proposed in (Saadallah
2021) in a deep reinforcement learning context and in particular
an actor-critic algorithm. The policy network (actor) is trained to
gain experience on how to select the best set of weights given a
previous combination of models in the ensemble. The goal is to
learn a policy in the continuous action space, in which the
actions are determined to be the set of weights of the ensemble.

Explainability in Time Series Analysis
In many safety-critical domains there may be some major risks
if (machine learning) models are directly used as black-box
tools that can magically solve problems. An effective approach
to mitigate this is to have methods that provide explanations
about their outcomes. These interpretability methods can be
classified according to various criteria. For instance, a general
categorization could be based on the universality of the method.
Model-agnostic methods can be used to explain any model
(Ribeiro 2016), whereas model-specific methods are specifically
built to add interpretability for a certain type of model. Another
categorization is based on whether these methods are
incorporated in the model structure or applied independently of
it (Rojat 2021), (Theissler 2022). The two categories of
approaches that arise in this case are post-hoc and ante-hoc.
Post-hoc are model-agnostic methods that provide explanations
of a model by extracting relationships between feature values
and their predictions (Moradi 2021). On the other hand,
ante-hoc methods offer explainability as part of the model’s
settings and components providing automatically any generated
explanations at the time of prediction (Sarkar 2022). Ante-hoc
methods are considered as model-specific, given that they can
be used only to explain themselves. We present more details for
each categorization in the following paragraphs.

Post-hoc Methods vs. Ante-hoc Methods Post-hoc
explainability approaches are separated from the model they
explain and can provide insight into what a model has learned
after training without changing or taking advantage of its
underlying structure. Post-hoc methods are commonly selected
to explain convolutional neural networks.

Ante-hoc explainability methods are studied whenever there is
the possibility to generate explanations from the model’s inner
components. Such models can be considered directly
interpretable due to their simple structure or transparency by
design. Examples include decision trees, recurrent neural
networks, transformers, etc., and in particular their attention
mechanism.

Local vs. Global Explanations Another categorization between
explanations is whether they are local or global. Local
explanations methods are those which make predictions sample

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 7
Lazaros Avgeridis

by sample, as for example convolutional neural networks.
Although recurrent neural networks make their predictions
sample by sample, they have a memory state that retains the
knowledge built. Their latent representations are designed to
handle one or several samples depending on whether the internal
states are reset after each prediction. The explanations are
therefore local if the internal states represent one instance, or
global if the internal states represent several instances. Global
explanation approaches provide an explanation that describes
the overall logic of the entire model for any input instance.
Models able to produce global explanations do not usually
process the data sample by sample. Some research also extends
the methods generating local explanations to produce global
explanations (Oviedo 2019).

Other methods Other explainability methods return
representative examples from the training dataset as
explanations of a typical behavior. Shapelets (Guidotti 2021) are
able to produce explanations for time series (Medico 2021),
(Vandewiele 2021). Shapelets are subsequences that are
maximally representative of a class. A shapelet is called
discriminant if it is present in most series of one class and absent
from series of the other classes. In a classification setting, the
goal is to find the most discriminant shapelets given some
labeled time series data (Ye 2009).

In (Cho 2021) a clustering approach is studied based on
subsequences. Explanations based on subsequences identify
sub-parts of a time series responsible for the classification
outcomes. Each cluster is composed of a list of temporal
sequences that activate the same nodes. Highly activated
temporal regions are extracted that contribute to activating
internal nodes and are identified in order to obtain their general
shapes.

Other model-agnostic, post-hoc approaches use feature selection
methods (Pang 2017), as for example for anomaly detection we
may use a subset of features that makes an anomaly even more
abnormal (Siddiqui 2019). In that way those features constitute a
valid explanation for that anomaly.

Explanation Systems TSExplain (Chen 2021) helps users to
understand the underlying evolving explanations for aggregated
time series. It works similarly to ExplainData feature of Tableau
or Explain Increase of PowerBI. Users need to create a query
with a group-by clause and use an aggregation function as for
example the sum. The system provides explanations on the
value of the aggregation function between two time steps of
data’s granularity to highlight which features had the greatest
impact on the result. Internally, TSExplain models the
explanation problem as a segmentation problem over the time
dimension. Intuitively, explanations tend to be continuous over
time and they would expect to span some time before
disappearing or drifting to some other explanations. Thus, the
problem can be framed as a segmentation problem over time t,

as we would like explanations within each segment to be
coherent, while explanations across neighboring segments to be
distinct.

OUR USE CASE
We studied marine data from [AIS], which are free and publicly
available. The data are real-world data collected from sensors of
variable datetime granularity. The dataset contains the following
attributes:

● MMSI - Maritime Mobile Service Identity value
(integer as text)

● BaseDateTime - Full UTC date and time
(YYYY-MM-DDTHH:MM:SS)

● LAT - Latitude (decimal degrees as double)
● LON - Longitude (decimal degrees as double)
● SOG - Speed Over Ground (knots as float)
● COG - Course Over Ground (degrees as float)
● Heading - True heading angle (degrees as float)
● VesselName - Name as shown on the station radio

license (text)
● IMO - International Maritime Organization Vessel

number (text)
● CallSign - Call sign as assigned by FCC (text)
● VesselType - Vessel type as defined in NAIS

specifications (int)
● Status - Navigation status as defined by the COLREGS

(text)
● Length - Length of vessel (see NAIS specifications)

(meters as float)
● Width - Width of vesses (see NAIS specifications)

(meters as float)
● Draft - Draft depth of vessel (see NAIS specification

and codes) (meters as float)
● Cargo - Cargo type (SEE NAIS specification and

codes) (text)
● TransceiverClass - Class of AIS transceiver (text)

(unavailable in 2017 dataset)

It is clear that MMSI, VesselName, IMO, CallSign, Length,
Width, Cargo and TransceiverClass can be considered as
vessel’s characteristics. In particular, the MMSI uniquely
identifies the vessel.

In this work, we focus on SOG, which is the speed of the vessel
relative to the surface of the earth. We fix the granularity of the
observed values to every 5 minutes using the mean and filling
missing values if any with forward fill. We present the resulting
values of one vessel from May 28, 2021, to June 4, 2021, in Fig.
2.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 8
Lazaros Avgeridis

From the figure, we can easily extract the vessel’s trips, which
can be further verified with the corresponding spatial
information (LAT, LON).

Due to the fact that labeled anomalies do not exist in this dataset
for the SOG attribute, we had to select an appropriate
unsupervised learning approach to detect outliers. In general,
many types of anomalies can emerge in datasets, but by looking
at Fig. 2 in particular, we can clearly discern some extremum
data points. These observations may or may not be true outliers
in practice. Still, it would be valuable to be able to detect them
and attempt to explain why and how they appear, i.e we would
like to know if unusually high-speed values are caused by
extreme weather conditions or engine failure.

Consequently, we utilize the power and robustness of decision
trees to identify anomalies in time series data. More specifically,
we use the Isolation Forest algorithm to predict whether a
certain point is an outlier or not in an unsupervised manner.
Isolation Forest (IF) (Liu 2008) is a tree ensemble method that
belongs to the algorithm family “Isolation tree methods”
mentioned in Section 3.1 (Anomaly Detection). It explicitly
identifies anomalies instead of profiling normal data points. In
other words, detects anomalies purely based on the fact that
anomalies are data points that are few and different. The
detection of them is accomplished without employing any
distance or density measure. As a hyperparameter, we set the
contamination to 0.01. This number expresses what proportion
of outliers are present in the data. Fig. 3 shows the detected
anomalies (highlighted in red).

Examining the results produced by IF we can see that most
anomalies detected correspond to exceptionally high values of
SOG, approximately over 11 knots. Additionally, the algorithm
identifies some outliers with values below 2 knots that do not
seem to deviate significantly from the rest of the data depicted
here. We hypothesize that this behavior is related to our choice
of the contamination hyperparameter and might indicate that we
should either reduce or increase its value and execute the
experiment again.

One of the most extensively used and straightforward
approaches for labeling outliers is Inter Quartile Range (IQR).
This is a very robust technique based on statistics and it is
essentially a measure of how stretched or squeezed is the
distribution of the data. To be more precise, the IQR is defined
as the difference between the 75th and 25th percentiles of the
data. To calculate the IQR, we divide our data points into
quartiles or four rank-ordered even parts via linear interpolation.
These quartiles are denoted by Q1 (also called the lower
quartile), Q2 (the median), and Q3 (also called the upper
quartile). The lower quartile corresponds to the 25th percentile
and the upper quartile corresponds to the 75th percentile, so IQR
= Q3 − Q1. Any data point that falls outside of either 1.5 times
the IQR below the first quartile or 1.5 times the IQR above the
third quartile is considered an outlier.

Fig. 4 demonstrates anomalies detected by the IQR method. We
observe that IQR classifies as anomalies, data points with SOG
values approximately over 11 knots, similar to the IF method.
However, it expands to data points with values closer to 10
knots. Furthermore, some outliers towards the end of the x-axis
are identified, which are equal to or slightly over SOG value of
10 knots.

Uncovering anomalies in the data can also be done by
calculating the standard deviation of the dataset of interest and
then using it as the cutoff point for locating irregular behavior.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 9
Lazaros Avgeridis

In this sense, the Standard Deviation method is similar to IQR.
In other words, we define an upper and lower limit as U = μ +
3*stdev and L = μ - 3*stdev respectively, where μ is the dataset
mean and stdev is the dataset standard deviation. After
calculating these bounds, we classify all points lying outside of
this region as outliers.

The results of the Standard Deviation method are shown in Fig.
5. This approach finds the smallest number of anomalies
compared to IF and IQR. Nonetheless, the detected outliers have
SOG values between 11 and 12 knots, which was also the case
for the other two techniques.

Moreover, in an attempt to eliminate random short-term
variations and extrema and to highlight other components, such
as trend, season, or cycle, present in our time-series, we
computed the simple moving average of the data, also known as
the rolling mean. A sliding window of one hour was used and
the smoothed counterpart of Fig.2 is presented in Fig. 6.

We then calculated the difference between the original SOG
time-series Yraw and the smoothed SOG time-series Ysmo. On the
resulting time-series Ydif we applied Standard Deviation as our
outlier detection method (Fig. 7). Lastly, we projected the
anomalies detected on Ydif to Yraw (Fig.8). Outliers in Ydif are
located roughly below y = -3 and above y = +3, while the
projected outliers in Yraw are scattered along the entire y-axis.
For instance, we can see that every point with SOG value equal
to 0 following a region of steep decrease is classified as an
anomaly.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 10
Lazaros Avgeridis

We note that applying the IQR and standard deviation methods
to the smoothed time series generate the same point anomalies
(Fig.9).

As zero values may affect the anomaly detection algorithms, we
apply below the standard deviation method using three ranges
2*stdev, 1.75*stdev and 1.5*stdev see figures 10, 11 and 12
respectively. For the range defined by 3*stdev no anomalies are
detected.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 11
Lazaros Avgeridis

To elaborate more on this idea, we isolate the subseries that
contain no zero values. Those can be considered as the
individual trips of the ship. We apply the standard deviation
method using the 2*stdev range to detect possible anomalies.
We illustrate our results in the figures 13, 14 and 15.

We conclude that trip A contains some anomalies mostly at the
end of its time as it travels with relatively high speed at those
time points. Trip B shows high acceleration followed by sharp
deceleration at the beginning and at the end of the trip. Trip C
can be considered without any anomalies.

Lastly, anomaly detection using forecasting is examined last.
The main idea is that past points can generate a forecast of the
next point with the addition of some random variable, which is
usually white noise. Forecasted points in the future will generate
new points and so on. We predict the new point from past
datums and find their difference in magnitude. After choosing a
threshold, we are able to identify anomalies. To test this
technique, we used a popular module in time-series called
Prophet (Prophet). We note that Prophet takes into account some
additional features for example the predicted time series
variable, the upper and lower limit of the target time series
variable, and the trend, to facilitate anomalies’ detection.
Utilizing the same data, we identify the anomalies depicted in
Fig. 10. Since this technique is based on forecasting, it usually
leads to results of low quality. This is not the case though.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 12
Lazaros Avgeridis

CONCLUSIONS
With the growth in time series data availability in recent times,
mainly due to the increase in usage of IoT devices, one can get
immense value out of performing various analysis tasks on
them. The shipping industry in particular can greatly benefit by
adopting Digital Twins technology. Through this novel
approach, industry stakeholders will be able to discover insights
for enhanced decision-making in shipping operations and
importantly for reducing the carbon footprint of the main ship
classes. Our proposed infrastructure offers an effective solution
for automated data capture, processing, and analysis, which can
be leveraged in the context of Digital Twins applied in maritime
use cases.
After reviewing the current state of time series analysis
literature, especially anomaly detection and forecasting, our
future endeavors will be targeted towards developing a model
library of our own. More specifically, our intention is to
efficiently implement some of the most widely used anomaly
detection and forecasting algorithms, perform experiments on
vessel data/publicly available time series datasets, evaluate their
performance, and combine all of the above in an open-source
time series library.

ACKNOWLEDGEMENTS
This work was supported by the EU Horizon Europe project
DT4GS (Grant No. 101056799).

REFERENCES
[AIS] https://marinecadastre.gov/ais/

Abdallah, Mustafa, Ryan Rossi, Kanak Mahadik, Sungchul Kim,

Handong Zhao, and Saurabh Bagchi. 2022.

“Autoforecast: Automatic time-series forecasting

model selection.” In Proceedings of the 31st ACM

International Conference on Information and

Knowledge Management, CIKM ’22, page 5–14.

Bole, Marcus, Gabriel Powell, and Eric Rousseau. 2017.

“Taking Control of the Digital Twin.”

Boniol, Paul, John Paparrizos, Yuhao Kang, Themis Palpanas,

Ruey S. Tsay, Aaron J. Elmore, and Michael J.

Franklin. 2022. “Theseus: Navigating the labyrinth of

time-series anomaly detection.” Proc. VLDB Endow.,

15(12):3702–3705.

Boniol, Paul, John Paparrizos, Themis Palpanas, and Michael J.

Franklin. 2021. “SAND: streaming subsequence

anomaly detection.” Proc. VLDB Endow.,

14(10):1717–1729.

Campos, David, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai

Zheng, Bin Yang, and Christian S. Jensen. 2022.

”Unsupervised time series outlier detection with

diversity-driven convolutional ensembles.” Proc.

VLDB Endow., 15(3):611–623.

Chen, Yiru, and Silu Huang. 2021. “TSexplain: Surfacing

evolving explanations for time series.” In Proceedings

of the 2021 International Conference on Management

of Data, SIGMOD ’21, page 2686–2690.

Cho, Sohee, Wonjoon Chang, Ginkyeng Lee, and Jaesik Choi.

2021. “Interpreting internal activation patterns in deep

temporal neural networks by finding prototypes.” In

Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, KDD ’21,

page 158–166.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 13
Lazaros Avgeridis

https://marinecadastre.gov/ais/

Dama, Fatoumata, and Christine Sinoquet. 2021. “Time Series

Analysis and Modeling to Forecast: a Survey.”

Danielsen-Haces. 2018. “Digital twin development: condition

monitoring and simulation comparison for the revolt

autonomous model ship.”, Master’s thesis, Norwegian

University of Science and Technology.

De Gooijer, Jan G., and Rob Hyndman. 2005. “25 Years of IIF

Time Series Forecasting: A Selective Review.” SSRN

Electronic Journal. 10.2139/ssrn.748904.

Guidotti, Riccardo, and Anna Monreale. 2021. “Designing

shapelets for interpretable data agnostic classification.”

In Proceedings of the 2021 AAAI/ACM Conference on

AI, Ethics, and Society, AIES ’21, page 532–542.

Khelifati, Abdelouahab, Mourad Khayati, Philippe

Cudre-Mauroux, Adrian Hanni, Qian Liu, and Manfred

Hauswirth. 2021. “Vadetis: An explainable evaluator

for anomaly detection techniques.” IEEE 37th

International Conference on Data Engineering (ICDE),

pages 2661–2664.

La Grange, Elgonda. 2018. "A Roadmap for Adopting a Digital

Lifecycle Approach to Offshore Oil and Gas

Production.", Offshore Technology Conference, vol. ,

pp. 15.

Lai, Kwei-Herng, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu

Wang, and XiaHu. 2021. “Revisiting time series outlier

detection: Definitions and benchmarks.” In Thirty-fifth

Conference on Neural Information Processing Systems

Datasets and Benchmarks Track (Round 1).

Leandro, Kennedy, Luís Bitencourt Jr, Guilherme Franzini,

Alfredo Neto, Giovanni Amaral, Guilherme Rangel,

Guilherme Martins, Edgard Malta, Raul Dotta and

Paulo Videiro. 2021. “A methodology for development

of a digital twin ship.”

Lipton, Zachary. 2015. “A Critical Review of Recurrent Neural

Networks for Sequence Learning.”

Liu, Zhenyu, Zhengtong Zhu, Jing Gao and Cheng Xu. 2021.

"Forecast Methods for Time Series Data: A Survey," in

IEEE Access, vol. 9, pp. 91896-91912, doi:

10.1109/ACCESS.2021.3091162.

Liu, F. T., K. M. Ting and Z. -H. Zhou. 2008. "Isolation Forest,"

Eighth IEEE International Conference on Data Mining,

pp. 413-422..

Medico, Roberto, Joeri Ruyssinck, Dirk Deschrijver, and Tom

Dhaene. 2021. “Learning multivariate shapelets with

multi-layer neural networks for interpretable timeseries

classification.” Adv. Data Anal. Classif.,

15(4):911–936.

Moradi, Milad, and Matthias Samwald. 2021. “Post-hoc

explanation of black-box classifiers using confident

itemsets.” Expert Syst. Appl., 165:113941.

Munkhdalai, Lkhagvadorj, Tsendsuren Munkhdalai, Kwang Ho

Park, Tsatsral Amarbayasgalan, Erdenebileg Batbaatar,

Hyun Woo Park, and Keun Ho Ryu. 2019. “An

end-to-end adaptive input selection with dynamic

weights for forecasting multivariate time series.” IEEE

Access, 7:99099–99114.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 14
Lazaros Avgeridis

Oviedo, Felipe, Zekun Ren, Shijing Sun, Charles M. Settens,

Zhe Liu, Noor Titan Putri Hartono, Savitha Ramasamy,

Brian L. DeCost, Siyu Isaac Parker Tian, Giuseppe

Romano, Aaron Gilad Kusne, and Tonio Buonassisi.

2019. “Fast and interpretable classification of small

x-ray diffraction datasets using data augmentation and

deep neural networks.” npj Computational Materials,

5:1–9.

Pang, Guansong, Longbing Cao, Ling Chen, and Huan Liu.

2017. “Learning homophily couplings from non-iid

data for joint feature selection and noise-resilient

outlier detection.” In Proceedings of the 26th

International Joint Conference on Artificial

Intelligence, IJCAI’17, page 2585–2591.

Pang, Guansong, Chunhua Shen, Longbing Cao, and Anton Van

Den Hengel. 2021. “Deep learning for anomaly

detection: A review.” ACM Comput. Surv., 54(2).

Paparrizos, John, Yuhao Kang, Paul Boniol, Ruey S. Tsay,

Themis Palpanas, and Michael J. Franklin. 2022.

“TSB-UAD: an end-to-end benchmark suite for

univariate time-series anomaly detection.” Proc. VLDB

Endow., 15(8):1697–1711.

[Prophet] https://facebook.github.io/prophet/

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016.

“Why should I trust you?: Explaining the predictions of

any classifier.” In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, page

1135–1144.

Rojat, Thomas, Raphael Puget, David Filliat, Javier Del Ser,

Rodolphe Gelin, and Natalia Diaz-Rodriguez. 2021.

“Explainable artificial intelligence (xai) on timeseries

data: A survey.” ArXiv, abs/2104.00950.

Saadallah, Amal, Maryam Tavakol, and Katharina Morik. 2021.

“An actor-critic ensemble aggregation model for

time-series forecasting.” In IEEE 37th International

Conference on Data Engineering (ICDE), pages

2255–2260.

Sarkar, Anirban, Deepak Vijaykeerthy, Anindya Sarkar, and

Vineeth N. Balasubramanian. 2022. “A framework for

learning antehoc explainable models via concepts.”

2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 10276–10285.

Schmidl, Sebastian, Phillip Wenig, and Thorsten Papenbrock.

2022. “Anomaly detection in time series: A

comprehensive evaluation.” Proc. VLDB Endow.,

15(9):1779–1797.

Siddiqui, Md Amran, Alan Fern, Thomas G. Dietterich, and

Weng-Keen Wong. 2019. “Sequential feature

explanations for anomaly detection.” ACM Trans.

Knowl. Discov. Data, 13(1).

Theissler, Andreas, Francesco Spinnato, Udo Schlegel, and

Riccardo Guidotti. 2022. “Explainable ai for time series

classification: A review, taxonomy and research

directions.” IEEE Access, 10:100700–100724.

Tuli, Shreshth, Giuliano Casale, and Nicholas R. Jennings.

Tranad. 2022. “Deep transformer networks for anomaly

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 15
Lazaros Avgeridis

https://facebook.github.io/prophet/

detection in multivariate time series data.” Proc. VLDB

Endow., 15(6):1201–1214.

Vandewiele, Gilles, Femke Ongenae, and Filip De Turck. 2021.

“Gendis: Genetic discovery of shapelets.” Sensors,

21(4).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. “Attention is all you need.” In

Proceedings of the 31st International Conference on

Neural Information Processing Systems (NIPS'17).

6000–6010.

Wen, Qingsong, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing

Ma, Junchi Yan, and Liang Sun. 2022. “Transformers

in time series: A survey.”

Wenig, Phillip, Sebastian Schmidl, and Thorsten Papenbrock.

2022. “Timeeval: A benchmarking toolkit for time

series anomaly detection algorithms.” Proc. VLDB

Endow., 15(12):3678–3681.

Ye, Lexiang and Eamonn Keogh. 2009. “Time series shapelets:

A new primitive for data mining.” In Proceedings of

the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’09,

page 947–956.

Time Series Analysis for Digital Twins in Green Shipping SOME
2023, 7-8 March, Athens GR 16
Lazaros Avgeridis

