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Executive summary 

Deliverable 2.2 presents the proposed structure and components of the DT4GS Dataspace. 

This document represents version 1 of the two deliverables that will be released in the 

scope of the DT4GS project. The second version, describing the final structure of the 

Dataspace will be release on the 34th month of the project. Certain aspects of this 

document build upon and expand the "Transferable DT4GS architecture" (D2.1), which is 

currently in the finalization stage and is scheduled for release in the 12th month. 

Within a maritime context, the Digital Twin enables services mainly focused on decision 

support/ decision-making, for the purpose of, at company level, optimizing operations and 

at industry level facilitating the greening transition. DT4GS Dataspace has two main 

functionalities; to establish the bidirectional data link between the physical vessel, its 

digital counterpart and components providing the data required for the creation and 

evolution of the Digital Twin, and additionally to support sharing of data between shipping 

actors/stakeholders. 

The primary objectives of this document are to establish the current state of the art, outline 

the technical requirements, conduct a comprehensive survey of relevant technologies, and 

provide an initial definition of the constituent elements comprising the DT4GS dataspace. 

This is conducted accounting for the requirements defined by the consortium partners but 

also the state of the art and the intended actors that will actively interact with the 

Dataspace both for configuration tasks and for the actual utilisation of the Digital Twin. 

The document presents the needs that the Dataspace have to address to ensure the 

communication, store and computational capabilities necessary to allow for the 

operational use of the Digital Twin.  

Concerning deliverable’s organisation, the next section is devoted to the discussion of IT 

architectures for shipping/maritime, in particular architectures that enable the Internet of 

Things (and in this context, the Internet of Ships). Then, the Section 3 discusses the data 

requirements for the DT4GS project pilots, in terms of data types, storage and processing 

requirements etc. This leads to the overview of the Dataspace architecture, and the 

analysis and evaluation of technical choices for data storage, processing and 

communicating, and finally in Section 4, the selection of the technological solutions that 

implement them. Section 5 provides more detailed description of the dataspace 

components, starting from a central component, a Message Broker, developed in Apache 

Kafka that is responsible for the message exchanges utilised for data transmission within 

the Dataspace. The technology implied for the communication ship-shore is described 

highlighting the customisation needs due to the different configurations of the ship 

informative system and IoT infrastructure between the different ships that will be utilised 

as Living Labs during the project. Lastly, a brief description of the possible external data 

sources is presented. Section 6 discusses the different analytics applications envisaged in 

the Living Labs, and how the Dataspace supports them. 

This document, which is delivered in the first part of the project, reflects developments 

that are currently in progress towards the implement the first version of the Dataspace.  
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Glossary of terms and acronyms used  

Table 1 Glossary of acronyms and terms. 

Acronym / Term Description 

ANN Artificial Neural Network 

API Application Programming Interface 

AWS Amazon Web Services 

CNN Convolutional Neural Networks 

DS Dataspace 

DT Digital Twin 

DT4GS Digital Twin for Green Shipping  

ERP Enterprise Resource Planning 

GCP Google Cloud Platforms 

HF data High Frequency Data 

HQ Headquarters 

IDS International Dataspace 

IIOT Industrial Internet of Things 

IoS Internet of Ships 

IoT Internet of Things 

KG Knowledge Graph 

LL Living Labs 

LSTM Long short-term memory 

ML Machine Learning 

PMS Property Management System 

REST Representational State Transfer 

RDBMS Relational Database Management System 

RNN Recurrent Neural Network 

SAND Streaming Subsequence Anomaly Detection 

SotA State of the Art 

VM Virtual Machine 

WP Work Package 
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1 Introduction 

1.1 DT4GS Overview  

As digitalisation in the shipping industry has been maturing over the recent years, DT 

adoption will be dependent on establishing trusted and convincing DT application 

exemplars and ensuring that ship operators and other industry stakeholders can set up 

their own DTs based on their own business models, building their own confidential 

knowledge at reasonable cost. This requirement is at the heart of the DT4GS approach as 

illustrated in the Figure 1.  

 
Figure 1 DT4GS approach 

DT4GS is aimed at providing a virtual representation of ships and physical transport entities 

with a bi-directional communication links from sensing to actuation/control and data driven 

simulation and AI based decision support. In DT4GS extra emphasis will be given to DT 

applications onboard the ship utilising advanced IoT computing infrastructure and machine 

learning techniques. DT4GS therefore, creates a common point of reference in the digital 

world for shipping vessels, which different stakeholders can access and utilise and adapt 

in line with their own internal business needs. 

To reach its goals DT4GS is divided into 6 WPs each with different goals, tasks, and 

deliverables. 

This deliverable details the work in progress in Work Package 2 and in particular Task 2.2, 

which is led by the partner Fincantieri NexTech, responsible for the definition and 

implementation of the DT4GS Dataspace. T2.2 is divided into sub-tasks, each aimed at 

implementing the key components for data storage and communication between the 

various entities and applications making up the Dataspace. 

Given that this deliverable is written during the first part of the project, while the 

development of the Dataspace components is still in progress and overall DT4GS 

Architecture is not yet finalised, the contents of the deliverable will be revised and refined 

in the next version.  The purpose of this deliverable is therefore to provide architectural 

perspectives and report on components needed to progress with the WP2 early 

prototyping.  However, open topics are underlined in the body of the document and will 

be described in their final implementation in the context of D2.3 “DT4GS (Green Shipping) 

Dataspace v2” due month 34 of the project.

Ship Physical world Ship Digital  TwinData 
Asset/ System Monitoring

Interventions 
Control

Improved decisions

Company-centric Confidentiality preserving  DT
Improved decisions - Optimisation [operation, retrofitting, newbuilds] 

DT4GS  Open Digital 
Twin Framework 

Configuration 
Updates

Support
Reporting

EDGE

DT4GS Modeling Framework and Models 
and Blueprints Directory 

DT4GS Data Space, Semantics and 
Connectors

Geen Ship  Operation Optimisation 
Reference Digital Twin

Zero-emission shipping Virtual Testbed 
and Decision Support System 

(retrofit / new build)

Common DT 
Dataspace
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1.2 Mapping DT4GS Outputs 

The purpose of this section is to map DT4GS Grant Agreement commitments, both within the formal Deliverable and Task description, against the current 

document. 

 

Table 2 Adherence to DT4GS Grant Agreement deliverable and work description. 

DT4GS GA 

Component 

Title 

DT4GS GA Component Outline Respective Document 

section(s) 

Justification 

DELIVERABLE 

D2.2 DT4GS 

(Green 

Shipping) 

Dataspace v1 

Connectors Module 1st Version, IoT infrastructure, 

Internal and External Connectors matching selected 

priority use cases. This deliverable includes the outputs 

of T2.2. 

 

Section 5 (chapters 

5.1,5.2,5,3, 5.4) 

Those chapters describe all the components 

and technologies to be implemented to 

develop the DT4GS DS as per GA.  

TASK 

ST2.2.1 Provide 

a central 

connectors 

module 

Enable (a) End-to-end encrypted device authentication 

management; (b) Streaming and Queuing message 

exchanges (Apache Kafka, Apache Pulsar); (c) 

Deployment automation (Kubernetes) supporting 

cluster configurations for increased message loads and 

efficient processing; (d) provide a management and 

configuration User Interface (UI) supporting embedded 

monitoring and visualisation (e.g. Grafana, ELK); (e) 

Section 5 (chapters 

5.1,5.2,5.5,5.6,5.7,5.8, 

5.11,5.17) 

In this chapter is presented the actual 

solution as projected by DT4GS partners to 

augment the DT4GS Dataspace with the 

communication capabilities required as 

defined in the GA. The functionalities of the 

Central Connector module are described also 

with respect to the connection with other 

components of the dataspace. 
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integrate CHARIoT’s blockchain-based PKI integration 

for sensor / gateway authentication and blockchain-

aided encryption of IoT endpoints; (f) implement Smart 

contracts for process automation (certification process, 

contract process), secure IOT, DT data transparency and 

trust. 

ST2.2.2 Create 

the DT4GS IoT 

infrastructure 

Support automated localised data capture, processing, 

and event-based data flows for better visibility, 

performance management, and enhanced automation 

of vessel operations. Implement components for time 

series processing and analysis, including anomaly 

detection, change detection, and forecasting, as well as 

complex event processing by combining data from 

multiple sensors. 

Section 5 (chapters 5.12, 

5.14), Section 6 

An overall description of the possible 

algorithms and approaches as per the SotA 

literature is presented. Some tools 

supporting the evaluation of the outputs are 

presented. The evaluation is still ongoing by 

the project partners, working on the available 

data to grant the required data quality to 

enable the DT4GS DT operational 

functioning. 

ST2.2.3. 

Develop 

Internal 

connectors for 

ship 

subsystems 

Based on the LL requirements and the central 

connectors module, supply the necessary connectors to 

link the ship subsystems to the DT4GS infrastructure. 

Develop and deploy specific APIs (wrappers) to these 

systems enhanced and semantically enriched via 

metadata of the DT4GS ontology. Link to the central 

connectors’ module, configuring blockchain enabled 

connectivity deploying event-based data streaming 

components. 

Section 5 (subchapter 

5.7.1, chapters 

5.10,5.11,5.14) 

The solutions for the implementation 

described in this chapter reflect the actual 

implementation described in the GA of the 

project. Security topics, depending on the 

requirements of the LL, still in gathering 

phase, will be addressed as per GA 

description. 
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ST2.2.4. 

External 

Connectors 

Based on the LL requirements supply the necessary 

connectors to setup the links between the central 

connector’s module and external data resources. APIs 

developed and deployed in the context of the LLs will 

become available via an API Registry. APIs and metadata 

descriptions will be semantically enriched, using the 

DT4GS ontology to enable and facilitate semantic search 

and interoperability across the LL deployed federated 

solutions. 

Section 3 (subchapter 

3.6.2), Section 5 

(chapter 5.15,5.16,5.17) 

The solutions for the implementation 

described in this character reflect the actual 

implementation described in the GA of the 

project. A first batch of possible external 

sources to be considered to enrich the DT4GS 

Dataspace data are presented. Section 3.6.2 

explains a solution to implement and 

leverage external data in the context of the 

DT operational functioning.   
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1.3 Deliverable Overview and Report Structure 

In this section, a description of the Deliverable’s Structure is provided outlining the respective Chapters 

and their content.  

Section 1 Introduction: Overview of DT4GS, Mapping of DT4GS Outputs and overview and structure of 

the deliverable. 

Section 2 Review of the State of the Art (Maritime data characteristics, Ship information architectures, 

Internet of ships, the international Data Spaces (IDS) Standards), and the overall Information 

Architecture for Dataspace.  

Section 3 Data Requirements for DT4GS including data aspects to be considered, actors participating to 

the Dataspace, Data Requirements from Living Labs and overview of Data types in DT4GS and their 

processing requirements. Also, the system architecture of DT4GS Dataspace, data fabric and Knowledge 

Graphs. 

Section 4 Evaluation of data processing infrastructures and selection criteria, including Knowledge Graph 

technology Selection, IoT/time series database selection, and messaging infrastructures selection. 

Section 5 Detailed description of the Dataspace architecture including the Central Connector Module , 

the Messaging System, the Kafka Cluster, Internal and external Connectors. Also, considerations for data 

cataloguing and lineage, security, and device authentication and encryption. Also, discussion of platform 

deployment and monitoring aspects. Additionally, data pre-processing and cleansing, including data from 

external sources.  

Section 6 Analytics application including Time series-processing and Analysis of Sensors Data for anomaly 

detection. Additionally, discussion on Machine Learning deployment environments to host the analytics 

applications.  

Section 7 Conclusions of the work described in this Deliverable. 

Section 8 References 
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2 State of the Art review 

2.1 Maritime data characteristics 

Maritime data comes from a variety of sources including the ship bridge data network, conventional 

automation systems, new ‘e-ship’ systems, performance monitoring, reporting, Automatic Identification 

System (AIS), Vessel Traffic Services (VTS), weather and other environmental monitoring, port data and 

others. This creates issues related to data ownership, heterogeneity, quality etc, that a data processing 

infrastructure such as the one to be developed in DT4GS needs to address. 

 Due to the mobility of ships and intermittent communications, data quality may suffer resulting in 

incomplete, inaccurate, or unreliable data. These issues hinder the seamless use of ship data in decision 

making applications. Overall, the large volume and variety of data are turning data mining, big data 

analytics, and data visualization into significantly challenging issues in the maritime domain due to high 

computation and communication complexities. In addition, the integration of data management 

technologies that span multiple ships and ports is still an open challenge mainly because of unreliable and 

slow transmissions as well as incompatible application programming interfaces. The ability to perform 

timely and cost-effective analytical processing of such large datasets to extract deep insights is a key 

ingredient for success. These insights can drive automated processes for optimizing ship and fleet 

operations, and importantly knowledge transfer on decarbonisation solutions and complying with 

regulation for reducing emissions.  

 

2.2 Ship information architectures 

Many maritime information architectures have been developed in the past years, as shown in Figure 2 

from the EU MUNIN project. 

 
 Figure 2 Different maritime information models (source EU MUNIN Maritime Unmanned Navigation through Intelligence in 

Networks Project) 

Each of these models covers a different aspect of maritime such as geospatial information (e.g., ENC), 

safety (e.g., AIS) or reporting (e.g., Manifests, FAL forms).  Because of that, the structure and processing 

requirements of such information models vary greatly.   
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2.3 Internet of ships 

The Internet of Ships (IoS) paradigm1 has recently emerged following the concept of e-navigation and the 

advancements of Internet of Things (IoT) technologies. According to IoT, things/devices/objects are 

transformed from conventional to smart by sensing, communicating and processing. In the maritime 

world, these things can be any physical device or infrastructure associated with a ship, a port, or the 

transportation itself. Figure 3 illustrates how smart sensors and devices, networks middleware and 

applications realise the Internet of Ships. 

 
Figure 3 Multitiered IoT architecture 2 

 

 
1 Sheraz Aslam, Michalis P. Michaelides, and Herodotos Herodotou, Internet of Ships: A Survey on Architectures, 
Emerging Applications, and Challenges.  IEEE INTERNET OF THINGS JOURNAL, VOL., NO., MAY 2020 
2 Giménez, Pablo & Llop, Miguel & Olivares, Eneko & Palau, Carlos & Montesinos, Miguel & Llorente, Miguel. (2020). 
Interoperability of IoT platforms in the port sector. 
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2.4 The international Data Spaces (IDS) Standards 3 

An obstacle for a wider deployment of ship data use and sharing in an industrial context is the lack of 

trust in data and its sharing mechanisms. To counter this problem, the International Data Space 

Association (IDSA) has developed an architecture to define a standard for data exchange on a trusted 

and self-regulated basis. 

The International Data Spaces (IDS) standard creates the basis for the future of a global digital economy. 

It combines a technical architecture and governance models to facilitate the secure and standardized 

exchange and easy linking of data in data spaces. The IDS standard guarantees data sovereignty. It allows 

companies and individuals to self-determine how, when and at what price their data is used along the 

value chain, thus enabling new intelligent services and innovative business processes. Companies can 

share any data in any ecosystem, thus transforming the digital economy worldwide.  

One key aspect of the IDS standards is the use of a data sovereignty framework, which ensures that data 

is stored and processed in compliance with the laws and regulations of the country where the data 

originates. This is achieved using data controllers, who are responsible for ensuring that data is processed 

in accordance with local laws and regulations. 

Another important aspect of the IDS standards is the use of data protection and privacy by design 

principles. This means that privacy and security considerations are built into the data sharing process from 

the outset, rather than being an afterthought. This is achieved using techniques such as data 

anonymization and pseudonymization, as well as the use of secure communication protocols. 

The IDS standards also provide guidelines for data interoperability, which is essential for effective data 

sharing and collaboration. This includes the use of common data formats and protocols, as well as the 

use of semantic data models to ensure that data can be easily understood and used by different 

organizations. In addition, the IDS standards also provide guidelines for data governance, which is 

essential for ensuring that data is used responsibly and ethically. This includes the use of data use 

agreements and data access policies, as well as the use of data quality and data lineage techniques to 

ensure that data is accurate and reliable. 

In order to achieve the  DT4GS goals, it is important to apply the IDS standards in a way that ensures 

interoperability between partners and enables the exchange of information while maintaining data 

sovereignty but still emphasizing the open nature of the project. 

2.4.1 IDS in the maritime domain 

The maritime domain is facing an increasing amount of data generation from different sources such as 

ships, ports, coastal monitoring systems, among others. The data generated by these sources is valuable 

for improving the efficiency and safety of maritime operations, but also for addressing environmental 

and security challenges. However, the data is often siloed, inconsistent, and difficult to share and use. 

The IDS framework can help to overcome these challenges by providing a secure and privacy-compliant 

way of sharing and using maritime data. The IDS can be adapted to the maritime domain by defining 

specific data models, data controllers and connectors that will enable the interoperability of different 

data sources, services and applications. The IDS can provide a governance framework to ensure that the 

data is used ethically and responsibly, and that the data sovereignty and privacy regulations are 

respected. 

 
3 International Data Spaces (fraunhofer.de) 

https://www.dataspaces.fraunhofer.de/en/InternationalDataSpaces.html
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One key aspect of the IDS adaptation to the maritime domain is the use of a data sovereignty framework, 

which ensures that data is stored and processed in compliance with the laws and regulations of the 

country where the data originates. This is essential for the maritime domain as it often involves data from 

different countries and international waters. Another important aspect of the IDS adaptation to the 

maritime domain is the use of data protection and privacy by design principles. This means that privacy 

and security considerations are built into the data sharing process from the outset, rather than being an 

afterthought. This is essential for the maritime domain as it often involves sensitive data such as personal 

data and location data. 

The IDS can also provide data interoperability, which is essential for effective data sharing and 

collaboration in the maritime domain. This includes the use of common data formats and protocols, as 

well as the use of semantic data models to ensure that data can be easily understood and used by 

different organizations. 

In addition, the IDS can provide guidelines for data governance, which is essential for ensuring that data 

is used responsibly and ethically in the maritime domain. This includes the use of data use agreements 

and data access policies, as well as the use of data quality and data lineage techniques to ensure that data 

is accurate and reliable. 

IDS connector 

The IDS Connector is the central technical component for secure and trusted data exchange. The 

connector sends your data directly to the recipient from your device or database in a trusted, certified 

data space, so the original data provider always maintains control over the data and sets the conditions 

for its use. The connector uses technology that puts your data inside a sort of virtual “container,” which 

ensures that it’s used only as agreed upon per the terms set by the parties involved.  Data exposed via 

IDS Connector is published with data endpoints description to an IDS meta-data broker. This approach 

allows data consumers to available data sources in terms of structure, quality, eventual obsolescence and 

other various information. 

Figure 4 clarifies the data exchange modalities between different data providers via the IDS Connector 

application. 

 
Figure 4 The IDS Connector concept4 

 

 
4 Source: https://newsroom.eclipse.org/eclipse-newsletter/2021/october/eclipse-Dataspace-connector-trusted-data-

sharing-sovereignty 

https://newsroom.eclipse.org/eclipse-newsletter/2021/october/eclipse-dataspace-connector-trusted-data-sharing-sovereignty
https://newsroom.eclipse.org/eclipse-newsletter/2021/october/eclipse-dataspace-connector-trusted-data-sharing-sovereignty
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The IDS Connector Library consists of several different types of connectors, including: 

1. Data connectors: These connectors provide access to data sources, such as databases and file 

systems, and enable the retrieval, storage and transformation of data. 

2. Service connectors: These connectors provide access to services, such as machine learning or 

analytics services, and enable the execution of specific tasks on the data. 

3. Communication connectors: These connectors provide secure communication channels between 

different systems and services and enable the exchange of data and metadata. 

4. Authentication and authorization connectors: These connectors provide authentication and 

authorization mechanisms for accessing data and services. 

Each connector in the IDS Connector Library has a well-defined interface and is designed to be reusable 

and composable. This allows different connectors to be combined to create complex workflows for data 

sharing and collaboration. 

The IDS Connector Library is typically used by data controllers, who are responsible for ensuring that data 

is processed and shared in compliance with local laws and regulations. The library provides a set of 

functionalities to automate tasks such as data lineage, data quality, data use agreements and data access 

policies, which are crucial for data governance. 

Libraries for the implementation are available for the main programming languages, such as Java, Python, 

C++ and C#. 

 

2.5 The Information Architecture for DT4GS Dataspace 

Figure 5, shows the conceptual information architecture of the Dataspace, inspired by the Internet of 

Ships paradigm. It can be considered in terms of several layers.  The bottom layer (Sensing) consists of 

the IoT infrastructure onboard the ship that collects and transmits sensor data. The layer above (Inter-

network) is responsible for transmitting the data to both onboard and on shore systems using different 

network and communication technologies. The Data fabric layer is responsible for organising, cataloguing 

and interlinking the diverse data, and providing them with semantics (metadata) so that can be 

discovered and utilised by the Services and applications layer. This layer is responsible for the different 

analytics and other applications running onboard and onshore systems. These applications and services 

are utilised by the DT4GS actors shown in Figure 6. 

The below conceptual architecture will be further analysed and become concrete in the forthcoming 

sections of this Deliverable. 
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Sensing Layer

DT4GS actors

Data fabric  layer

Services and application layer

Inter-Network Layer

 
Figure 5 Dataspace information architecture. 
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3  Data Requirements for DT4GS 

3.1 Data aspects to be considered 

There are different types of data on the Internet of Things including RFID (Radio Frequency Identification) 

data, environmental data, location data, multidimensional time series Sensor data and actuator status 

and control order data. In addition, many of such data are unstructured or semi-structured and may lack 

precise definitions of their schemata. Lack of strong frameworks for sensor and sensor data security also 

create problems of lack of ownership and lineage knowledge. Moreover, the sheer volume of sensor data, 

their stream-based arrival and need to fuse them and process them, often in real time create particular 

requirements for a suitable data processing architecture. 

3.2  Actors participating to the Dataspace 

Similar to the IoT data diversity, there is a diversity of data users (consumers).  Data producers and 

consumers may be either on the shore or on the vessel. These are systems including digital twin (DT) type 

of systems.   

The Dataspace facilitates the different actors with the following: 

• Acquire data required for the DT operation 

• Contribute to the Dataspace with the available information produced by the DT 

• Interact with the DT 

• Configuring the DT 

 

Figure 6 shows the two software major components and the various actors. These are categorized in 

Table 3 with respect to the relationship with a DT4GS instance and their role. 

The vessel system and the shore must be able to exchange data in a fast and reliable manner to enable 

real time data processing, allowing for the DT configuration and the display of information both on board 

and on shore. 

Table 3 Summary of Dataspace internal and external actors’ roles 

Category Actors Relationship  

Office end users Office Engineer 

Office Operator 

Chartering Operator 

Purchaser 

Crewing Operator 

Interact with the DT in a 

monitoring or decision support 

role. 

Vessel end users Captain 

Engineer 

Desk Officer 

Receive collected information 

and evaluate operational advice 

by the DT 
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IT personnel IT Engineers Keep the infrastructure 

working, as well as all the 

software applications. 

Internal data sources Sensor and other onboard 

systems 

Ship maintenance, control/ 

supervisory and operation 

systems 

External data sources Organizations outside of the 

Ship Owner’s. 

Provide data to enrich all the 

information collected on the 

ships. 

Authorities Organizations outside of the 

Ship Owner’s organisation 

such as port authorities 

They need to receive data from 

the ship for e.g., regulatory 

compliance 

Model providers Organizations outside of the 

Ship Owner’s. 

They can provide the Dataspace 

with models that can potentially 

be leveraged to improve the 

simulation capabilities of the DT. 

Original equipment manufacturer Organizations outside of the 

Ship Owner’s. 

They can provide with 

components to be potentially 

integrated into the DS to 

implement particular 

functionalities 
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Figure 6 DT4GS ecosystem actors 

3.3 Data Requirements from Living Labs 

The way values are acquired from on-board sensors varies depending on the ship on which the digital 

twin system is installed. In this section, a brief review is provided of the on-board data acquisition system 

as an interface to the DT4GS internal connectors. Given that circumstance, the internal connectors built 

for the project have to be able to adapt to acquire and process data in different ship infrastructures. 

The Living Labs partners and the respective ships are presented and described in deliverable D1.1 of this 

project. 

The DANAOS’ EXPRESS ATHENS and EURONAV Alex’s ship infrastructure expose an API that can be 

queried to retrieve real time shipping data collected by the ship’s sensors. The internal connector will 

gather data with a given, configurable, sampling, parse them accordingly in order to make them ready to 

be sent to the central connector node in a predefined, structured node for the storing. The ship owners 
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will provide the project with the API documentation in order to allow the system to collect data given the 

decided connector configuration. 

BALEÀRIA’s Sicilia and Marie Curie ships present a similar configuration with a server that collects and 

stores on board data and consequently can be queried via a REST API to collect information. Also, in this 

case the Internal Connector will interface with the API, parse the gathered data and consequently post 

them on a Kafka topic to send it to the Dataspace. 

In the STARBULK’s ship case, Maharaj, there is not an infrastructure capable of exposing directly data via 

an API. The IoT sensor infrastructure is connected to an alarm and monitoring system. In this particular 

case, the Internal Connector have to interface itself with this particular system to be able to collect real 

data sensor to provide to the Dataspace.  

While this document is being written, contacts are ongoing between the DT4GS T2.2 participants and 

STARBULK engineers to define how the system will be interfaced. 

 

3.4 Overview of Data types in DT4GS and their processing requirements 

Table 4 Data types and requirements in DT4GS 

Data name  Data origin  Inbound or outbound 

data 

Data characteristics e.g 

stream/discrete 

structured/unstructured 

etc 

Ship location, motion 

and heading sensors 

IoT sensors Both Stream, structured 

Weather information 

data 

Weather information 

services  

Inbound Discrete, structured 

Hull condition 

diagnostics 

Hull IoT sensors Outbound Discrete/stream 

Engine condition 

diagnostics 

Engine IoT sensors Both Discrete/stream 

Fuel consumption Fuel monitoring 

sensors 

Outbound Discrete structured 

Cargo condition 

monitoring sensors 

Sensors for monitoring 

cargo condition e.g., 

temperature etc. 

Outbound Discrete 

structured/unstructured 

 

Table 4 Data types and requirements in DT4GS summarises the data types that are considered in DT4GS 

and provide requirements for the design of the Dataspace data processing capabilities. Such capabilities 

in terms of data storage, processing, distribution, security etc are further described in the following 

sections of this Deliverable.  
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3.5 Overview of the System Architecture of DT4GS Dataspace 

A Dataspace is a data infrastructure that organizes information into a meaningful and easily accessible 

format. It aims to store, manage and retrieve data in an efficient and organized manner. The purpose of 

a Dataspace is to provide a centralized location for data, enabling multiple users to access, manipulate 

and analyse information quickly and easily, leading to better data-driven decision making and insights. 

The data to be processed and digested in a Dataspace may be of different nature and origin, therefore 

one of the key characteristics to be assured in a Dataspace is a common formatting of the data itself to 

grant easy accessibility to it. It is essential that security is ensured in the passage of data between the 

various components of the Dataspace. Finally, a fast retrieval of data has to be a focal goal in the design 

and development of the Dataspace, in particular in the DT4GS use case, to allow for a real-time processing 

and consequently enable applications like a real time optimization tool.  

 

 
Figure 7 DT4GS Dataspace components and link with components of the DT4GS DT architecture 

 

The logical components of the DT4GS Dataspace architecture are: 

• Central Connector; 

• Data storage; 

• Internal Connectors; 

• External Connectors; 

• Dataspace Connectors. 

Each of those entities as visualised in Figure 7 can be decomposed into smaller blocks that implement 

particular functionalities of the Dataspace and that are developed leveraging the state-of-the-art 

technologies.  

Those entities, shown in Figure 7, will be briefly introduced in this chapter and then subsequently better 

explained in the following sections of this document. 
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The Central Connector 

The Central Connector has the purpose to interconnect the components of the system while ensuring 

security and transparency. Allows various components of the DS to exchange data and information via 

message exchanges. The technology of choice for the implementation in the DT4GS DS is Apache Kafka 

that implements a publish-subscribe (pub-sub) model. More on the topic will be described in section 5.2. 

In Figure 7, the messaging system node is shown, responsible for actual message routing between 

components, Data catalog and Lineage, platform monitoring, processing units and the task scheduler, 

(analysed in Sections 5.5 and 5.6) that triggers the various applications to enable particular routines and 

simulation execution within the DT. The Central Connector Node represents the core of the Dataspace, 

allowing for data centralization. 

Data storage 

As already stated, the DT4GS ecosystem is composed of different kind of data to be shared and processed 

between its internal software applications and components. Different data storages utilities are applied 

in the DS. Data streams collected by on-board sensors are stored in a time-series data format utilising a 

NoSQL database called InfluxDB (discussed in Section 4.2) by the node Data. A configuration database 

(node Config) is required to store configurations data for all the software involved in the digital twin and 

associated services.  

The models built by the DT4GS partners, in particular in the scope of WP1, are stored in File System. 

Different storing formats are in evaluation while completing the DS architecture definition. In particular, 

the adoption of the Functional Mock-up Interface (FMI) is to be considered as the best solution, with it 

being supported by 170+ tools and maintained as a Modelica Association Project5. FMI is an open standard 

that defines a container and an interface to exchange dynamic simulation models using a combination of 

XML files, binaries and C code, distributed as a ZIP file. 

The node KG (further discussed in Section 4.1) represents the data fabric of the entire DT4GS Dataspace, 

using a graph data structure that is used to represent knowledge in the form of nodes and edges. 

In order to ensure better performance of the DT in data processing, a cache-like memory (node Cache) 

will be set up that will contain at runtime the last data used, to allow quick access and reusability, some 

reference data that are particularly useful and intensively used by all applications, and finally useful data 

for the process. 

Internal Connectors 

The Internal connectors (analysed in Section 5.3) are responsible for the exchange of sensory and other 

data from the Vessel System and the Shore System. Sensor data will be recovered from the on-board 

systems available on the ship, partially processed and analysed and then exported towards the Central 

Connector node for the actual storing of the information, to make them available and usable to the Digital 

Twin applications. In line with previous statements, the technology chosen for information exchange will 

be Apache Kafka (further analysed in Section 5.2), so as to ensure consistency and interoperability 

between the Vessel System and the Shore System, hosting the central connector. 

External Connectors 

Not all the information required for the DT to operate is directly available from on-board and internal 

data. Based on the Living Labs requirements, necessary connectors, External connectors, (analysed in 

 
5 MA Projects — Modelica Association 

https://modelica.org/projects
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Section 5.4) are created to enable the digital twin systems to retrieve information from external sources, 

such as weather-data APIs, fuel availability and prices data, information relative to other ships in 

navigation, etc. 

Dataspace Connectors 

Given the niche aspect of digitalization in the maritime industry when viewed from a broader industrial 

perspective, it may be a wise strategy to adapt solutions from broader domains to the maritime context 

in order to reap benefits from adoption, support, and future developments. The IDS standards (discussed 

in Section 2.4), applied in the maritime context can allow for a more structured data handling and sharing 

between separate entities, part of different organizations. As showed in Figure 7, IDS connectors can 

allow other users, external from the organization to interact and retrieve data from the Dataspace based 

on rules defined in the connector itself. Models, Knowledge graph and other information can be 

exchanged with other Dataspaces together with new potential use cases to be considered and managed 

by the DT4GS DT to achieve the goals set by the partners. 

 

3.6 DT4GS Dataspace  

3.6.1 Data fabric  

Because the DT4GS Dataspace is tasked to support a very broad type of ship data with diverse structure, 

format, ownership, processing requirements and so on, it requires a dedicated infrastructure that can 

make such data easily discoverable, accessible, integratable and usable. In data management literature 

this infrastructure is called data fabric6. Using a data fabric, data from disparate sources can be found, 

understood and integrated to support analytics applications faster and at a lower cost.  

One technology that can realise data fabric is the Knowledge Graph. The next section discusses selecting 

a suitable Knowledge Graph technology to implement a data fabric in Dataspaces. 

3.6.2 Knowledge Graph 

Given the different software applications, services and tools that cooperate to allow the DT4GS system 

to effectively map the actual ship behaviour and support the operational utilization of the digital twin 

itself, the Project proposed the use of Knowledge Graphs to support the data flow and the orchestration 

of the computational steps required for a given operation. 

Knowledge graphs (KG) are a powerful tool for representing and reasoning about large and complex sets 

of data. From a general point of view, they are a type of graph data structure that is used to represent 

knowledge in the form of nodes and edges. KG are becoming increasingly important in recent years as 

the amount of data available on the internet has grown.  

There are several key features of knowledge graphs, including: 

• Representation of entities: KG represents entities in the form of nodes, which can be anything 

from people, organizations, and locations to concepts and ideas. 

• Representation of relationships: they represent relationships between entities in the form of 

edges, which can be anything from "is-a" relationships to more complex relationships such as 

"part-of" or "works-for". 

 
6 Using Data Fabric Architecture to Modernize Data Integration (gartner.com) 

https://www.gartner.com/smarterwithgartner/data-fabric-architecture-is-key-to-modernizing-data-management-and-integration
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• Semantic representation: they use a consistent vocabulary and ontology to represent entities and 

relationships, which allows for automated reasoning and inferencing. 

• Scalability: KG can be scaled to handle large amounts of data and are able to handle millions of 

nodes and edges. 

In the scope of the DT4GS KG are utilized to describe a data elaboration pipeline, highlighting the inputs 

data to gather from the data storage, the models and tools to utilize for data processing, and the actual 

outputs to be produced and stored in the Dataspace itself. An example of this concept is presented in 

Figure 8 below.  

 
 Figure 8 Example of Knowledge Graph to describe the computational steps to obtain CO2e and FOC given the required models and 

data 
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4 Evaluation of data processing infrastructures and selection 

criteria 

4.1 Knowledge Graph Selection 

There are several software solutions that implement knowledge graphs, including: 

Neo4j7: Neo4j is an open-source graph database that can be used to create and store knowledge graphs. 

It supports Cypher, a graph-oriented query language that allows you to traverse and query your graph 

data. Neo4j also provides a web-based user interface and a set of APIs for interacting with the graph data. 

GraphDB8: GraphDB is a proprietary triplestore that allows you to store, manage and query RDF data. It 

has aset of features such as reasoning, geospatial and temporal data handling, and text search. GraphDB 

is often used in semantic web and linked data projects. 

GraphQL9: GraphQL is a query language that allows you to define the structure of your data and the 

operations that can be performed on it. It is often used to build APIs and can be used to create and store 

knowledge graphs. 

These solutions are in evaluation by the DT4GS partners to select the one that best fits the system needs. 

 

4.2 IoT Database Selection 

In order to properly handle IoT data generated by the different ship sensors, databases play a critical role. 

As a consequence, the selection of the right database is crucial.   Key factors for selecting a database for 

storing an IoT applications10 include indexing, size, scaling, reliability when dealing with vast numbers of 

data, user-friendly schemas, languages for querying, convergence and heterogeneity, aggregation of 

time series, archiving, security and cost effectiveness. 

The following is a list of candidate IoT databases: 

CrateDB11 is a distributed SQL database management system. It is designed for high scalability since it is 

open source and written in Java, and it includes components from Facebook Presto, Apache Lucene, 

Elasticsearch, and Netty.  

MongoDB12 is a document-oriented database software that is available as a free and open source cross-

platform framework. It is classified as a NoSQL database application. MongoDB makes use of JSON-style 

documents with schemas.  

RethinkDB13: RethinkDB is an open-source database, built-from-the-ground-up portable JSON database 

for the real-time Network 

 
7 https://neo4j.com 
8 Ontotext GraphDB 
9 GraphQL | A query language for your API 
10   https://iot4beginners.com/top-5-databases-to-store-iot-data/) 
11 CrateDB – Distributed SQL Database Enabling Data Insights at Scale 
12 MongoDB: The Developer Data Platform | MongoDB 
13 RethinkDB: the open-source database for the realtime web 

https://www.ontotext.com/products/graphdb/
https://graphql.org/
https://iot4beginners.com/top-5-databases-to-store-iot-data/
https://crate.io/
https://www.mongodb.com/
https://rethinkdb.com/
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SQLite14: SQLite Database Engine is a process library that offers a transactional SQL database engine that 

is serverless (standalone). Because of its portability and small footprint, it has had a huge impact on game 

and mobile application growth. 

IoTDB Apache15: IoTDB is an IoT native database with high performance for data management and 

analysis, deployable on the edge and the cloud. 

 

4.2.1 Time series databases 

Time series databases (TSDBs) allow the storing of data over a period of time. Time series enables the 

inserting or appending data in comparison to updating or deleting data. TSDBs can be used in IoT devices 

and system software to obtain metrics for predictive analytical purposes. TSDB are used for storing 

sensor logging data that can be used in analysis to aid in predictive maintenance.  However, TSDBs can 

suffer from data volume limitation, difficulty in optimizing read and write operations to prevent 

overlapping, and difficulty in handling static data16. 

Some well-known time series databases include: 

• InfluxDB 17 

• Graphite18 

• TimescaleDB19 

• Apache Druid20 

• RRDTool21 

 

4.2.2 Rationale for selecting   Influx DB 

The technology of choice for the storage of data driven application is InfluxDB. InfluxDB is a NoSQL 

database optimized for the ingestion of time-series data like the one we will retrieve from ship IoT 

sensors. 

InfluxDB is a time series database built to handle high write and query loads. InfluxDB is a custom high-

performance datastore written specifically for time-stamped data, and especially helpful for use cases 

such as DevOps monitoring, IoT monitoring, and real-time analytics. Data can be permanently conserved, 

but the DBMS is configurable to potentially setup expiration data logics for part of the data stored. While  

InfluxDB also offers a SQL-like query language for interacting with data, granting good performances on 

data querying and easy composition interpretation of the requests. 

We selected InfluxDB for storing sensor data in the Dataspace for the following reasons: 

1) InfuxDB allows series to be indexed. 

 
14 SQLite Home Page 
15 https://iotdb.apache.org 
16 Time Series Database (TSDB) (opengenus.org) 
17  https://influxdata.com 
18  https://graphiteapp.com 
19 Time-series data simplified | Timescale 
20 Druid | Database for modern analytics applications (apache.org) 
21 RRDtool - About RRDtool (oetiker.ch) 

https://www.sqlite.org/index.html
https://iotdb.apache.org/
https://iq.opengenus.org/time-series-database/#:~:text=There%20are%20various%20databases%20that%20help%20in%20the,Python%20and%20JavaScript%29%206%20RRDTool%20%28Written%20in%20C%29
https://www.timescale.com/
https://druid.apache.org/
https://oss.oetiker.ch/rrdtool/
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2) InfluxDB allows automated data down sampling and has a SQL-like query language. 

3) InfluxDB has built-in linear interpolation for missing data. 

4) InfluxDB allows for continuous queries in order to calculate aggregates. 

 

4.2.3 InfuxDB Technology Stack 

The whole InfluxDB tool suite is named TICK Stack. TICK stands for Telegraf, InfluxDB, Chronograf, and 

Kapacitor, which are integrated in a cohesive architecture, or "stack." Together these technologies 

provide a platform that can capture, monitor, store, and visualize all data in a time series, allowing for 

informed business decisions in real-time. 

Below are briefly presented the components of the TICK stack: 

Telegraf 

Telegraf is a plugin-driven server agent for collecting and reporting metrics. Telegraf plugins source a 

variety of metrics directly from the systems it runs on, pulling metrics from third-party APIs or even to 

listen for metrics via a StatsD and Kafka consumer service. It also has output plugins to send metrics to a 

variety of other datastores, services, and message queues, including InfluxDB, Graphite, OpenTSDB, 

Datadog, Librato, Kafka, MQTT, NSQ and many others. 

InfluxDB 

The TSDB itself. 

Chronograf 

Chronograf is the administrative user interface and visualization engine of the stack. It allows to setup 

and maintain the monitoring and alerting for the infrastructure. It also includes templates and libraries 

that allow the user to rapidly build dashboards with real-time visualizations of your data and to easily 

create alerting and automation rules. 

Kapacitor 

Kapacitor is a native data processing engine. In DT4GS we can potentially leverage Kapacitor capabilities 

on TS data elaboration to implement the logics and algorithms of the Dataspace. It can process both 

stream and batch data from InfluxDB. Kapacitor lets the user plug in a custom logic or user-defined 

functions to process alerts with dynamic thresholds, match metrics for patterns, compute statistical 

anomalies, and perform specific actions based on these alerts, like dynamic load rebalancing. Kapacitor 

integrates with HipChat, OpsGenie, Alerta, Sensu, PagerDuty, Slack and more. 

InfluxDB natively supports Kafka as an intermediate buffer before TS data is persisted for processing, 

analysis, and use in other applications. 

Cache memory and Configuration data 

The amount of data processed by the various tools that will cooperate to implement the Digital Twin 

application can be pretty huge. Given the real time requirements of some computation at the base of the 

system, fast access time to some data is required. One solution to this problem is to use a cache memory 

system, which stores frequently accessed data in a fast and easily accessible location. This approach can 

significantly improve the performance of a data space by reducing the number of requests to the primary 

data store and consequently the amount of data that needs to be transferred over the network. 
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4.2.4 Rationale for selecting Mongo DB 

Apart from sensor data, a variety of other types of ship data needs to be handled by Dataspace, as 

explained in previous sections. For this application a NoSQL database like MongoDB is the natural and 

more suited choice. There are, in fact, various reasons to lean towards to a NoSQL database to store that 

kind of data, such as more flexibility, scalability, better performances and even implementation cost 

reduction. Therefore, MongoDB was selected for the following reasons: 

• Flexibility: MongoDB is designed to handle dynamic, unstructured data and can easily 

accommodate changes to the schema. Configuration data often requires the ability to add, 

modify or remove fields quickly, making it a good fit. 

• Scalability: MongoDB databases are horizontally scalable, allowing them to easily handle large 

amounts of configuration data, which often need to be updated frequently. 

• Performance: MongoDB is optimized for fast and efficient retrieval of data, making them well 

suited for use cases that involve frequent reads and updates of configuration data. 

• Cost: compared to traditional relational databases these solutions are usually less expensive. 

  

MongoDB is document-oriented to allow for easy storage and retrieval of data, and it supports a wide 

range of data types. It also has built-in support for sharding, which allows for horizontal scaling and 

improved performance. MongoDB capacity to store some data directly in memory allows for the 

implementation of high-performance applications that require low-latency access to data.  

 

4.3 Messaging infrastructures selection criteria 

4.3.1 Messaging frameworks 

The following are some popular messaging frameworks for IoT22: 

1) MQTT (Message Queue Telemetry Transport) 

2) AMQP (Advanced Message Queue Protocol) 

3) DDS (Data Distributed Service) 

4) XMPP (Extensible Messaging and Presence Protocol) 

5) CoAP (Constrained Application Protocol) 

To select a message processing framework for the needs of the Dataspace use cases the following needs 

to be considered23: 

• Performance: The framework should be able to handle the required volume and rate of messages, 

and it should have low overhead and latency. 

• Reliability: The framework should support delivery guarantees and error handling mechanisms to 

ensure that messages are delivered reliably. 

• Security: The framework should support security features such as encryption and authentication 

to protect against unauthorized access and tampering. 

 
22 https://build5nines.com/top-iot-messaging-protocols/ 
23 https://build5nines.com/top-iot-messaging-protocols/ 

https://build5nines.com/top-iot-messaging-protocols/
https://build5nines.com/top-iot-messaging-protocols/
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• Compatibility: The framework should be compatible with the devices and infrastructure that are 

being used in the system. 

• Ease of implementation: The framework should be easy to implement and integrate with the rest 

of the system. 

• Scalable data movement and processing: the framework can handle backpressure and can 

process increasing throughput 

• Agile development and loose coupling: different sources and sinks should have their own 

decoupled domains. Different teams can develop, maintain, and change integration to devices 

and machines without being dependent on other sources or the sink systems that process and 

analyze the data.  

• Innovative development: new and different technologies and concepts can be used depending 

on the flexibility and requirements of a specific use case.  

But several challenges increase the complexity of IoT integration architectures: 

• Complex infrastructure and operations that often cannot be changed. 

• Integration with many different technologies like MQTT or OPC Unified Architecture (OPC UA) 

while also adhering to legacy and proprietary standards 

• Unstable communication due to unreliable IoT networks, resulting in high cost and investment in 

the edge 

 

4.3.2 Stream Processing architectures 

A streaming architecture is a defined set of technologies that work together to handle stream processing, 

i.e., series of data at the time the data is created. In many modern deployments, some streaming 

architectures include workflows for both stream processing and batch processing 

Two popular stream processing architectures are the Kappa and Lambda Architectures. The Kappa 

Architecture is considered a simpler alternative to the Lambda architecture as it uses the same 

technology stack to handle both real-time stream processing and batch processing. Both architectures 

handle the storage of historical data to enable large-scale analytics. The main difference with the Kappa 

Architecture is that all data is treated as a stream. 

4.3.3 Kafka 

The Kappa Architecture is typically built around Apache Kafka along with a high-speed stream processing 

engine. 

The reason for selecting Kafka for the DataSpace messaging24 needs is that traditional message brokers 

like Java Messaging Service (JMS)25, Apache ActiveMQ26, RabbitMQ27, and others are not designed to 

handle high volumes of messages and provide fault tolerance. Apache Kafka on the other hand, is 

designed to handle large volumes of messages and provide fault tolerance. It can be used as the central 

nervous system of a distributed architecture that delivers data to multiple systems.  Apache Kafka is a 

 
24 Why Kafka is the Future of Messaging | Engineering Education (EngEd) Program | Section 
25 Getting Started with Java Message Service (JMS) (oracle.com) 
26 ActiveMQ (apache.org) 
27 Messaging that just works — RabbitMQ 

https://www.section.io/engineering-education/why-kafka-is-the-future-of-messaging/
https://www.oracle.com/technical-resources/articles/java/intro-java-message-service.html
https://activemq.apache.org/
https://www.rabbitmq.com/
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distributed, partitioned, replicated commit log service. It helps you process a large amount of data 

through the use of various Kafka consumers. Kafka is available as a standalone server that you can install 

on your local machine and various other applications can consume it. The primary reason behind 

developing Apache Kafka was to serve companies with fast and efficient data pipelines. 

With a sufficiently fast stream processing engine, Kafka can be used for both batch and real time stream 

processing.  
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5 Detailed Architecture description 

5.1 The Central Connector Module 

The Central Connector has the purpose to interconnect the components of the system while ensuring 

security and transparency. Allows various components of the Dataspace to exchange data and 

information via message exchanges. The technology of choice for the implementation in the DT4GS DS is 

Apache Kafka that implements a publish-subscribe (pub-sub) model, as explained in the previous section.  

As already stated, the DT4GS ecosystem is comprised of different kind of data to be shared and processed 

between its internal software applications and components. Different data storages utilities are applied 

in the Dataspace. In particular, data streams collected by on-board sensors are stored in a time-series data 

format utilising the NoSQL database InfluxDB (reviewed in section 4). A configuration database is 

required to store configurations data for all the software involved in the digital twin and associated 

services.  

In order to ensure better performance in data processing, a cache-like memory will be set up that will 

contain at runtime the last data used, to allow quick access and reusability, some reference data that are 

particularly useful and intensively used by all applications, and finally useful data for the process. 

The purpose of the Central Connector Module is to interconnect the components of the Dataspace while 

ensuring security and transparency.  

In Figure 9 is shown the architectural diagram of the DT4GS infrastructure. The items in blue are the 

components of the central connector module. A “Message Broker” receives data and requests and 

properly routes them the intended destinations. The “platform monitoring” is a UI to visualize system 

performance metrics and provide interface for the configuration of the remaining components.  The 

“Data Catalogue/Lineage” component provides a detailed inventory of all data assets and their 

destination, utilization and transformation over their lifetime.  

In the following paragraphs are presented the following: 

• An overview of the messaging system, 

• The Data Catalog and Lineage description, 

• A preview of the capabilities and graphic output of the Platform Monitoring Interface, 

• An overview of the possible security implications and of the evaluated approaches, 

• The chosen technology for the deployment of all the Dataspace components. 
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Figure 9 Architectural diagram of the DT4GS infrastructure with highlighted the components of the central connector module. 

5.2 The Messaging System 

As illustrated in  Figure 9, data from the internal and external connectors, are ingested into the platform 

using a distributed event streaming mechanism. As explained in Section 4.3 the chosen technology is 

Apache Kafka (Kafka), a well-established open-source event streaming platform that is often preferred 

for applications with real time data.  

The Kafka cluster is administered by Zookeeper service (discussed in the next section); this service keeps 

track of the cluster’s metadata, such as the nodes, topics, partitions and so on. These will now be 

explained in more detail. 

5.2.1 The Kafka Cluster 

A Kafka cluster is a group of Kafka nodes that work together to handle the incoming data streams. In a 

Kafka cluster, there are typically multiple broker servers. Each broker is responsible for managing a 

portion of the data streams, called a partition. Each partition is made up of a sequence of messages, called 

a log. Producers write data to the cluster by sending messages to a specific topic, and consumers read 

from the cluster by subscribing to one or more topics. 

One key feature of Kafka is its ability to handle high levels of data ingestion and processing. This is 

achieved through horizontal scalability, where new brokers can be added to the cluster as needed to 

handle increased traffic. Additionally, Kafka uses a technique called replication to ensure that data is not 

lost in the event of a broker failure. Each partition is replicated across multiple brokers, so if one broker 

goes down, the others can continue to serve the data. 
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Another important aspect of Kafka is its support for real-time data processing. This is achieved through 

the use of a commit log, where each message is written to disk as soon as it is received. Data Consumer 

services can then read from the log and process the data in real-time. Additionally, Kafka provides support 

for complex data pipelines through its support for stream processing, where data can be transformed 

and processed as it is ingested. 

A vital component of a Kafka cluster is a distributed coordination service called ZooKeeper. ZooKeeper is 

a centralized service that is responsible for maintaining configuration information and providing 

distributed synchronization. In a Kafka cluster, ZooKeeper is used to manage the configuration of the 

brokers, track the location of partitions, and maintain a record of the overall health of the system. When 

a new broker is added to the cluster, it registers with ZooKeeper and receives its configuration 

information. Additionally, if a broker's configuration is changed, the change is propagated to ZooKeeper, 

and all other brokers in the cluster are notified of the change. Each partition in a Kafka cluster is replicated 

across multiple brokers, and ZooKeeper keeps track of which broker is the leader for each partition. This 

information is used by the producers and consumers to determine where to send and receive data. In the 

event of a broker failure, ZooKeeper will also coordinate the re-election of a new leader for the affected 

partitions. 

Finally, ZooKeeper also plays a critical role in maintaining the overall health of the system. It stores a 

record of the current state of the cluster, including the status of each broker and partition. This 

information is used by the clients to determine the health of the system and route their requests 

accordingly. 

In the DT4GS implementation, the central node, composed of the broker servers is in charge of granting 

the distribution and persistent storing of record and messages. 

Although only three components of the Dataspace are highlighted in blue in Figure 9 (as nodes fully 

dedicated to the implementation of the Central Connector Module), all components of the DS will be 

implemented as Kafka nodes, be they pure and simple consumers, or producers of data, as indicated by 

the arrows in the figure. This architecture allows for fast data retrieval times for all the DS-related 

applications that make up the DT4GS system environment. To achieve this communication capabilities 

the components will be empowered via Kafka Connect. To better explain this concept, we can analyze 

how the time series sensor data will be stored in the Dataspace once collected from the actual ship IoT 

infrastructure. The ship, as a producer, will publish on a dedicated topic, routinely given the chosen 

sampling interval, sensor data. The messages will be stored by the Central Connector node in order to 

make them available to the subscribers of the topic. Once triggered, or routinely, the InfluxDB instance 

will leverage the available dedicated Kafka Connect API to read from the topic and acquire the time series 

for processing and storing.  

5.3 Internal Connectors Nodes 

The Internal connectors are responsible for the exchange of sensory and other data from the Vessel 

System and the Shore System. Sensor data will be recovered from the on-board systems available on the 

ship, partially processed and analysed and then exported towards the Central Connector node for the 

actual storing of the information, to make them available and usable to the Digital Twin applications. In 

line with previous statements, the technology chosen for information exchange will be Apache Kafka, so 

as to ensure consistency and interoperability between the Vessel System and the Shore System, hosting 

the central connector. 
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5.4 External Connectors Nodes 

Not all the information required for the Digital Twin to operate is directly available from on-board and 

internal data. Based on the Living Labs requirements, necessary connectors are created to enable the 

digital twin systems to retrieve information from external sources, such as weather-data APIs, 

5.4.1 Dataspace Connectors Nodes 

The Dataspace Connector is an IDS connector that is currently being maintained by Sovity28. The 

connector was originally developed at the Fraunhofer ISST. With the help of the Dataspace Connector, 

existing software can easily be extended by IDS connector functionalities in order to integrate them into 

an IDS data ecosystem. Furthermore, it is possible to use the Dataspace Connector as a basis for the 

development of own software that is to be connected to an IDS data ecosystem. The Dataspace 

Connector uses the recent IDS Information Model version and the IDS Messaging Services for message 

handling with other IDS components. For managing datasets by means of their metadata as IDS 

resources, the Dataspace Connector provides a REST API. After an initial registration, IDS resources are 

persisted to an internal or external database of the connector. External data sources can be connected 

via REST endpoints, allowing the Dataspace Connector to act as an intermediary between the IDS data 

ecosystem and the actual data source. 

 

5.5 Data Catalog and Lineage 

The other modules of the Dataspace, such as the storage layer, the processing units, the model execution 

engine and the external connectors, communicate with each other through Kafka. A benefit from 

applying this topology is that it is possible to monitor and record the consumption point of produced data 

on Kafka. It is also possible to restrict or allow the distribution of specific information according to rules. 

The operation is facilitated by the existence of a central data catalog, listing the data sources along with 

their metadata.  

Data catalog and lineage are important concepts in managing and understanding large Dataspaces. A 

data catalog is a system that keeps track of all the data assets within a Dataspace, including their location, 

format, and metadata. This allows users to easily discover, understand, and use the data within the 

Dataspace. Data lineage, on the other hand, refers to the history of a particular data asset, including 

where it came from, how it was transformed, and where it is used. This information is crucial for 

understanding the provenance and trustworthiness of a particular piece of data, as well as for identifying 

and troubleshooting issues that may arise. 

With a comprehensive data catalog, users can easily find and access the data they need, while data lineage 

allows them to understand how that data was created and how it has been used. Together, these two 

concepts help to ensure that data is accurate, relevant, and trustworthy. 

 
28 https://sovity.de 

https://sovity.de/
https://sovity.de/
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Various technologies are available for the implementation. Some popular options include Apache Atlas29, 

Alation30, Collibra31, and Informatica MDM32. These tools provide a variety of features, such as data 

discovery, data lineage visualization, and metadata management, that can help organizations effectively 

manage and understand their Dataspaces. 

For these purposes it is examined the utilization of Apache Atlas as the DT4GS data governance tool. 

Apache Atlas provides open metadata management and governance capabilities for systems to build a 

catalog of their data assets, classify and govern these assets and provide collaboration capabilities around 

these data assets for data scientists, analysts and the data governance team. 

The metadata repository is built on top of a NoSQL database, such as Apache HBase33 or Apache 

Cassandra34, which allows for scalability and high performance. 

Atlas also includes a set of RESTful APIs that can be used to access and manage the metadata stored in 

the repository. These APIs can be used to create, read, update, and delete metadata, as well as to perform 

advanced searches and queries on the metadata itself. 

In addition to the core metadata repository, Apache Atlas also includes a number of other components 

that provide additional functionality. For example, it includes a data discovery and lineage component, 

which allows users to track the lineage of data assets through various stages of the data pipeline. This 

allows organizations to understand how data is used and transformed in their systems, and to identify 

potential issues or errors. 

Apache Atlas also provides a UI that allows user to easily navigate and interact with the metadata in the 

repository. The UI allows users to view metadata, perform searches, and create and manage policies, 

among other things. 

5.6 The Platform Monitoring Interface 

The data ingestion to the Kafka topics will be visualized with a platform (e.g., Grafana) so that the data 

rate, volumetrics and availability can be precisely defined and monitored. Moreover, the incoming real-

world data can be used in conjunction with historical data for the simulations but also as a validation 

measure on the output of a simulation, provided that the models allow for such input. Furthermore, 

specific topics can pass information to the dashboard together with the scheduler API so that the user is 

updated on the status of the simulations that are being executed. In addition, information regarding the 

simulation execution history and in cases output data will be stored in Kafka topics. For example, it is 

possible to create a line chart that shows the number of messages per second that are being processed 

by a Kafka topic, or a bar chart that shows the number of messages per topic over time. The user can also 

create tables that show the number of messages per topic, partition, or consumer group. 

Finally, the machine's resources along with metrics from the Kafka subsystem and the storage 

infrastructure are monitored through Prometheus exporters. The collected data can then be visualized 

with dedicated dashboards (Grafana, Prometheus) in a variety of different graphs and with alerting 

functionality built in. 

 
29 https://atlas.apache.org 
30 Learn About Alation - The Leader in Data Intelligence | Alation 
31 Collibra: Data Catalog, Data Governance & Data Quality | Collibra 
32 Master Data Management (MDM) Solutions and Tools | Informatica UK 
33 https://hbase.apache.org/ 
34 https://cassandra.apache.org/ 

https://atlas.apache.org/
https://www.alation.com/about-alation/
https://www.collibra.com/us/en?source=mkto-fallback-page
https://www.informatica.com/gb/products/master-data-management.html
https://hbase.apache.org/
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Figure 10 Example of Grafana Dashboard to monitor a Kubernetes cluster 

The dashboard, shown as an example in Figure 10, is customizable so it can be leveraged to create a UI to 

integrate in the DT4GS Dataspace as a tool to allow the user to keep control of every meaningful aspect 

to track in the DT4GS ecosystem. 

5.7 Security Considerations 

5.7.1 Device authentication and encryption 

In view of the forthcoming regulation concerning ships’ emissions, the application of a blockchain 

technology can provide the means for an autonomous, reliable, and trustful verification system to report 

environmental indexes to the authorities. However, the implementation of such a system possibly 

requires a decentralized topology, i.e. positioning of the blockchain intelligence closed to the data source, 

possibly on the internal connector instead of the central connector (Figure 11). In this case the central 

connector just passes through the communication.  

The solution, defined in GA and currently being studied to evaluate its application based on the inherent 

deployment needs of the DT4GS infrastructure, is the integration of CHARIoT's blockchain-based PKI for 

sensor/gateway authentication and blockchain-assisted encryption of IoT endpoints. 
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Figure 11 Example of sensor authentication and data exchange architecture with CHARIOT35 

 

Below are listed some of the CHARIoT blockchain-related functionalities available36:  

• End-to-end network solution with advanced capabilities for devices (sensors, gateways, etc.) 

authentication (via keys’ embedding) combined with blockchain and encryption technologies. 

• Combined authentication solution of blockchain with PKI (Public Key Infrastructure) 

technologies in the actual network devices (sensors and gateways). 

• Blockchain-aided encryption between all IoT network endpoints (sensor/gateway/FOG). 

• Mobile application for sensor provisioning in the IoT network utilizing the four-eye principle. 

• Blockchain-based state management for sensors (decommissioned, faulty, compromised etc.). 

• CHARIOT sensors (WiFi & Bluetooth) with high processing capabilities (supporting encryption, 

blockchain etc.)  

Given the heterogeneous IoT infrastructure already in place on the ships involved in the DT4GS Living 

Labs (discussed in Section 3.3), applicability of the CHARIOT’s solution is under investigation, therefore 

a final implementation, at the time that the present report is compiled, is not yet conceived.  

From the perspective of the central connector, it is required to ensure authentication of the connected 

subsystems, especially the internal and external connectors, in order to avoid system manipulation by 

providing artificial inputs.  

Authentication can also secure system from erroneous inputs that may result to exhaustion of the 

available resources (similar to DDOS symptoms).  

Apart from protecting system from artificial or false inputs, care is taken to secure the data 

communication from unauthorized access. The means to succeed this task is to encrypt the 

communication.  

 
35 https://www.chariotproject.eu 
36https://www.chariotproject.eu/wp-content/uploads/2020/11/WS3_Blockchain-as-an-enabler-for-IoT-Data-Security-

Safety-and-Privacy.pdf 

https://www.chariotproject.eu/
https://www.chariotproject.eu/wp-content/uploads/2020/11/WS3_Blockchain-as-an-enabler-for-IoT-Data-Security-Safety-and-Privacy.pdf
https://www.chariotproject.eu/wp-content/uploads/2020/11/WS3_Blockchain-as-an-enabler-for-IoT-Data-Security-Safety-and-Privacy.pdf
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Both encryption and authentication are foreseen for any communication between the different building 

blocks of the system.  

The current version of Kafka includes the following featuresi that, that can be used either separately or 

together, increasing security in a Kafka cluster: 

1. Authentication of connections to brokers from clients (producers and consumers), other brokers 

and tools, using either SSL or SASL.  

2. Authentication of connections from brokers to ZooKeeper 

3. Encryption of data transferred between brokers and clients, between brokers, or between 

brokers and tools using SSL  

4. Authorization of read / write operations by clients 

5. Authorization is pluggable and integration with external authorization services is supported 

Application of these security measures is optional - non-secured clusters are supported, as well as a mix 

of authenticated, unauthenticated, encrypted and non-encrypted clients. 

As per the actual direction evaluated by the DT4GS partners, as already stated in this section, internal and 

external connector must be implemented such as to guarantee for a secure authentication while 

exchanging data towards the central connector node. Given the data exchanged between ship and shore 

might be sensitive, encryption capabilities will be granted to all the Kafka nodes compromising the DS. 

These security features will be implemented, as a first iteration, using the Kafka features described above. 

5.7.2 Sensor and Gateway Authentication 

In view of the forthcoming regulation concerning ships’ emissions, the application of a blockchain 

technology can provide the means for an autonomous, reliable, and trustful verification system to report 

environmental indexes to the authorities. However, the implementation of such a system possibly 

requires a decentralized topology, i.e. positioning of the blockchain intelligence closed to the data source, 

possibly on the internal connector instead of the central connector. In this case the central connector just 

passes through the communication. At the time that the present report is compiled, the matter is under 

investigation, but a solution is not yet conceived.  

5.8 Deployment 

A goal of the project is to allow end users to easily implement and deploy their own version of the DT4GS 

infrastructure. The technology evaluated as the best for our framework is Kubernetes 

(htps://Kubernetes.io). 

Kubernetes is an open-source container orchestration system that automates the deployment, scaling, 

and management of containerized applications. It is widely used in organizations of all sizes, across 

various industries, to manage their containerized workloads. 

One of the main benefits of Kubernetes is its ability to automate and script the deployment of 

applications, which can greatly reduce the time and effort required to deploy and manage applications. 

This can be especially beneficial for organizations that have complex and dynamic workloads, or that need 

to deploy and manage applications across multiple environments. These scripts are managed by a version 

control system and are part of a Continuous Integration and Continuous Deployment pipeline (CI/CD). 

This pipeline will monitor the code repositories of the various components and any changes will trigger 

re-testing and operator instructed redeployment of the platform.  
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Grafana dashboards provide also monitoring for the Kubernetes infrastructure. 

To explain the choice of Kubernetes as a technology for deployment, the software and its operation are 

briefly presented below. 

A Kubernetes deployment typically includes several components and tools, including: 

• Kubernetes cluster: A set of machines that run the Kubernetes control plane and worker nodes. 

The control plane manages the overall state of the cluster, while the worker nodes run the 

containerized applications. 

• Container runtime: The software that is used to run the containerized applications. This can be 

Docker, containerd, or another container runtime. 

• Kubernetes API: The API that is used to interact with the Kubernetes cluster. This is typically 

accessed via the Kubernetes command-line interface (kubectl) or a Kubernetes client library. 

• Kubernetes manifests: YAML files that define the desired state of the deployment, including the 

containerized applications and the resources that they require. 

• kubectl: The Kubernetes command-line interface that is used to interact with the Kubernetes API. 

It can be used to create, update, and delete resources, as well as to view the current state of the 

cluster. 
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5.9 Data storage 

As introduced in section Data aspects to be considered, our Dataspace processes heterogeneous types 

of data and thus it is required for it to be able to store all these information in an effective format to allow 

fast data retrieving and processing.  

 
Figure 12 Architectural diagram of the DT4GS infrastructure with highlighted the components of the data storage. 

 

The chosen solutions for data storing and processing are presented in this document in the chapter 

Evaluation of data processing infrastructures and selection criteria. 
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5.10 Internal Connectors 

 
Figure 13 Architectural diagram of the DT4GS infrastructure with highlighted the components of the Internal Connectors. 

Given the actual sensor infrastructure already installed on board of the LL ships, the Internal connectors, 

presented, will be customized in order to ensure the digital twin has the capabilities to interface with the 

ship's information system, if present, or with the signal management system from the sensors behind the 

on-board real-time monitoring system as in Starbulk's ship case. This approach will allow the Digital Twin 

to include the whole hardware sensor infrastructure of the ships into the Dataspace making it a common 

IoT infrastructure capable of connecting devices on board and ashore, enabling users involved in the 

digital twin to monitor in real time the status of the ship. 

The Internal connectors, shown in Figure 13 Architectural diagram of the DT4GS infrastructure with 

highlighted the components of the Internal Connectors.are the components of the DT4GS infrastructure 

located on the ship and dedicated to the gathering of the IoT sensor data and consequently to the 

transmission of data from the ship itself to the ship-owner’s headquarters, where the central connector 

node and the Dataspace structure are located. Consequently, the minimum required capabilities for this 

component are to be able to adapt to the ship infrastructure and collect data from its informative system 

or IoT structure, organize them in a structured way and consequently provide them to the DT4GS 



Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799 

© DT4GS, 2022 45 

 

Dataspace for storage.For an easy, automated deployment of the solution the Internal Connector will be 

provided as a Docker Container37. 

5.11 Internal Connectors integration with the Central Connector Module 

As described in this document, all the main components of the DT4GS system will be enabled as Apache 

Kafka consumers/producers to allow the messaging system to connect. The internal connectors are no 

exception to that rule. 

5.12 Blockchain Enabled Connectivity 

Blockchain technology has recently gained a lot of attention as a way to provide secure, decentralized 

solutions for a variety of applications. One area where blockchain technology has the potential to make 

a significant impact is in the field of IoT connectivity, granting the security and integrity of the data being 

transmitted. Blockchain technology provides a solution for this challenge by allowing for the creation of 

decentralized networks where each node has a copy of the blockchain, providing a tamper-proof record 

of all transactions. By incorporating blockchain technology into an Apache Kafka-based IoT connectivity 

solution, it is possible to ensure that the data being transmitted is secure and cannot be tampered with. 

One way to implement this functionality is by using a blockchain-based distributed ledger to store the 

metadata of the messages transmitted in the Kafka cluster. This metadata would include information 

such as the timestamp, the sender, and the recipient of the message. By storing this information on a 

blockchain, the system can ensure that it is tamper-proof and can be used to verify the authenticity of the 

data being transmitted. Another approach is to use smart contract to validate the authenticity of the 

devices that are sending data to the Kafka cluster. 

As already stated in section 5.7.1 this approach requires a decentralized topology, i.e., positioning of the 

blockchain intelligence closed to the data source, possibly on the internal connector instead of the central 

connector, and is still investigated as by the DT4GS partners as a possible implementation choice. 

5.13 Data Streaming Modalities 

The Internal Connector in DT4GS are implemented as Kafka producers. The Kafka producer is 

conceptually much simpler than the consumer, as it does not need group coordination. A producer 

partitioner maps each message to a topic partition and then sends a production request to the leader of 

that partition. The partitioners supplied with Kafka ensure that all messages with the same non-empty 

key are sent to the same partition. 

5.14 On board data cleaning 

In order to clean up the acquired data to be transmitted to the Central Connector Node, it could be 

evaluated to provide some data pre-processing and cleaning capabilities to the Internal Connectors. At 

this stage of the project, this solution is in getting discussed by the DT4GS partners. To achieve this result 

a local instance of InfluxDB must be instantiated in the Internal Connector Node.  

The data will be saved in the local Influxdb instance, and some data cleaning routines will be performed 

on them, including outlier detection, as descripted in Section 6, and potentially data validation with a 

 
37 https://docker.com 

https://docker.com/
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fixed threshold of acceptability of the sensor value. This approach could eventually allow to lighten the 

burden of information exchanged between ship and shore by ensuring that only useful data is sent on 

the relevant topic. There are different ways to stream data from InfluxDB to an Apache Kafka topic, but 

one possible approach is to use a Kafka Connect sink connector for InfluxDB. The data stream can be 

triggered using the Kafka Connect command-line tool but can also be initiated and managed 

automatically by a service. 

5.15 External Connectors 

As already stated in section 1, the actual implementation and operation of a ship Digital Twin requires 

additional data that are not directly collectable from the ship system via Internal Connectors. Data like 

weather data, port traffic data, fuel availability/prices, etc might be accessible via other data sources and 

accessible in alternative ways like via APIs. For this reason, the DS needs to be augmented with external 

connectors, able to digest those external data and consequently enrich them with the required metadata 

before making them available to the Digital Twin ecosystem through the Central Connector Node. An 

interface with HQ ERP, PMS and other system might be needed too. 

 
Figure 14 Architectural diagram of the DT4GS infrastructure with highlighted the components of the external connector modules. 

The data linking between the external sources and the DT4GS DS is implemented via Apache Kafka as per 

the other data sources, to enable compatibility also in this context. As per the Internal Connectors the 
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applications are built leveraging Docker creating standalone containers to allow DT4GS users to easily 

deploy the application. 

In Figure 14 Architectural diagram of the DT4GS infrastructure with highlighted the components of the 

external connector modules.are highlighted the components of the Dataspace to be considered as 

External Connectors. The first block named External Connector represents generally every API and 

application built to allow retrieving data from external sources out of the DS itself. The other highlighted 

block, Dataspace Connectors, represents the actual implementation of the connectors between different 

Dataspaces as per the IDS Dataspace Standards. 

5.16 External data 

In this sub-chapter are presented some of the external data that might be useful to be leveraged in the 

DT4GS project. The main and more interesting external information could be classified as: 

• Weather data (for performance assessment). 

• Weather data (for routing). 

• Fuel availability/price. 

• Headquarters systems such as ERP, PMS, etc. 

 

In particular, as a matter of example, we cite the most important environmental conditions that could 

affect the choice of the optimal ship’s route. This data has been found to some of the most important 

weather sources, such as World Weather Online38, Copernicus39, Meteoblue40 and NOAA41. It is important 

to mention that in some platforms, this data is explicitly available, whereas in others, subscription may 

be needed. At the time that the present report is compiled, the external sources are evaluated to assess 

which ones could represent an added value for the project, enabling the models developed within the 

project to more faithfully simulate the real behaviour of the ship. The choice will be made in discussion 

with the consortium partners. In the following part of this document, the weather data is organized per 

source and some tables are provided to summarize the available information. 

5.16.1 World Weather Online  

The Premium Historical Marine Weather REST API method allows you to access marine data for a given 

longitude and latitude, as well as tidal data. The Historical Marine Weather API returns weather elements 

such as temperature, precipitation (rainfall), weather description, weather icon, wind speed, Tidal data, 

significant wave height, swell height, swell direction and swell period. Provides up to 7 days of forecast. 

The data provided from the World Weather Online, are presented in the Table 5 below: 

Table 5 World Weather Online API available data 

Weather element  

1 Date 

2 Maximum Temperature of the day in degree Celcius 

 
38 World Weather Forecasts | World Weather Online 
39 Homepage | Copernicus 
40 https://www.meteoblue.com/ 
41 Homepage | National Oceanic and Atmospheric Administration (noaa.gov) 

https://www.worldweatheronline.com/country.aspx
https://www.copernicus.eu/en
https://www.meteoblue.com/
https://www.noaa.gov/
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3 Maximum Temperature of the day in degree Fahrenheit 

4 Minimum Temperature of the day in degree Celcius 

5 Minimum Temperature of the day in degree Fahrenheit 

Astronomy element 

1 Local sunrise time 

2 Local sunset time 

3 Local moonrise time 

4 Local moonset time 

5 Moon phase 

6 Moon illumination 

Hourly element 

1 Local forecast time 

2 Temperature in degree Celcius 

3 Temperature in degree Fahrenheit 

4 Wind speed in miles per hour 

5 Wind speed in kilometres per hour 

6 Wind direction in degrees 

7 Wind direction in 16-point compass 

8 Weather condition code 

9 Weather condition description 

10 URL to weather icon 

11 Precipitation in millimetres 

12 Humidity in percentage 

13 Visibility in kilometres 

14 Atmospheric pressure in millibars 

15 Cloud cover in percentage 

16 Significant wave height in metres 

17 Swell wave height in metres 

18 Swell wave height in feet 

19 Swell direction in degree 

20 Swell direction in 16-point compass 

21 Swell period in seconds 

22 Water temperature in Celcius 

23 Water temperature in Fahrenheit 

24 UV index 

Tides element 
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1 Local tide time 

2 Tide height in meter 

3 Type of tide, i.e, high, low or normal 

 

 

 

5.16.2 Meteoblue Packages API 

Meteoblue offers numerous weather variables which are grouped into history and forecast packages. 

There are different packages for specific use cases like agriculture, renewable energy and many others. 

The data packages are available for different historical and forecasting time-ranges in the CSV and JSON 

formats. The data provided from the Meteoblue Packages API, are presented in the Table 6 below:  

Table 6 Meteoblue Packages API available data 

Precipitation 

1 Accumulated Precipitation 

2 Daily Precipitation 

3 Hourly Precipitation 

4 Accumulated Snowfall 

5 Daily Snowfall 

6 Hourly Snowfall 

Sea 

1 Wave Height (significant, swell, wind) 

2 Wave Period (swell, wind) 

3 Wave peak period (swell, wind) 

4 Ocean currents 

5 Sea water salinity 

6 Sea ice cover 

7 Water surface temperature 

 

5.16.3 National Oceanic and Atmospheric Administration API 

NCDC's Climate Data Online (CDO) offers web services that provide access to current data. This API is for 

developers looking to create their own scripts or programs that use the CDO database of weather and 

climate data. An access token is required to use the API, and each token will be limited to five requests 

per second and 10,000 requests per day. The data provided from the CDO database, are presented in the 

Table 7 below: 

Table 7 CDO database available data 

Real time data 
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1 Water Level 

2 Air temperature 

3 Water Temperature 

4 Barometric pressure 

5 Winds 

6 Relative humidity 

7 Visibility 

8 Next tide (when and if high or low) ~ every 6h 

Currents 

1 Currents velocity (some meters below the surface) 

Wave buoys (ports) 

1 Significant wave height 

2 Peak direction 

3 Wave period 

4 Water temperature 

 

5.17 External Connectors integration with the Central Connector Module 

As stated in the previous paragraph, external information is usually available via API calls. Given that 

assumption, it is possible to identify a lot of implementation parallels between the Internal and the 

External connectors.   
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6 Analytics Applications 

The sensor infrastructure on a ship includes a variety of sensors that are used to monitor various systems 

and conditions on board the ship. These sensors include engine sensors, which monitor the performance, 

temperature, pressure, and vibration of the ship's engines, navigation sensors, such as GPS and 

gyroscopes, which track the ship's position, heading, and speed, and environmental sensors, such as 

temperature, humidity, and air quality sensors, which monitor the conditions on board. Additionally, 

there are cargo sensors that monitor the weight, temperature, and condition of the ship's cargo, weather 

sensors, such as wind, rain, and wave sensors, that gather data on the ship's surroundings, and ballast 

and bilge sensors that detect any changes in the ship's water levels to ensure stability. Other sensors, 

such as fire and gas detectors, are included for safety purposes, and deck and hull stress sensors monitor 

the ship's structure and detect any signs of stress or damage. These sensors work together to gather 

data, which is then transmitted to edge devices or directly to the cloud for analysis and action. 

The information collected on the different ships made available by the LL partners to be used as a test 

bed presents many common data but at the same time there are differences to be managed. In the 

context of DT4GS, the data of interest are vessel data that arrive in the form of sensor observations. 

These observations are captured by onboard sensor technologies and may measure quantities such as 

velocity, fuel consumption, acceleration, engine temperature, etc. Since these observations are ordered 

based on time and arrive at fixed time intervals t, a straightforward way to model them is through time 

series data. Since multiple sensor updates are received at each timestamp, the produced time series are 

characterized as multivariate.  

A first approach to the whole data collected onboard must be to select from the available pool of 

monitored signals those useful for processing within the Digital Twin. One of the goals of the project at 

this stage is to provide a common interface between ship and shore, both from the communication 

standpoint but also relatively to the actual sensors’ information collected for the DT’s operational needs. 

While many common aspects, as expected, can be found in the IoT structure for all the ships in the LL, 

there are differences in the way data is collected and consequently in the way our DT can interface with 

them for data retrieving. 

The table reported in in annex 1 of the DT4GS deliverable D1.1 produced in the scope of the DT4GS project, 

which at the time of writing this document has already been published by the project consortium, 

presents the information on available sensors gathered by the partners in the work of task 1.1.  

While approaching the collected data, it is also expected that there will be incorrect, corrupted, or 

incomplete data points within the captured observations; hence, a data cleaning process is typically 

necessary prior to any analysis. Standard practices at the minimum perform the detection and removal of 

erroneous values, as well as missing values imputation. Furthermore, depending on the type of analysis 

we wish to perform, there may be further preprocessing steps required, such as normalization or 

dimensionality reduction. These steps could be partially performed on board before sending the data to 

shore, or handled completely in the land offices, easing the hardware requirements of the machines 

installed on board. This aspect is one of the topics being evaluated with the Living Labs partners. 

Once the data preprocessing procedure is completed, the data should be in a form appropriate to be used 

as input to various mathematical models (e.g., machine learning models) that will detect potential 

irregularities, extract valuable patterns or predict future behaviours. These computational steps must be 
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processed before time series data are made available for the simulation tasks underlying the operation 

of the DT4GS digital twin. 

The IoT Infrastructure is not compromised only by the actual sensors installed on-board but also by the 

edge devices, such as gateway computers, a communication system and user interfaces, such as 

dashboards, that visualize the data and allow for control of the ship systems. 

Event streaming platforms play a central role in ingesting, storing, and processing real-time data (e.g. 

sensor observations) in a scalable and resilient manner. In our case, an event (also record or message) is 

a notification that "something happened" in the vessel, i.e., an update on the state of the ship. An event 

stream is a continuous unbounded series of such events. The start of the stream may have occurred 

before we started processing the stream. The end of the stream is at some unknown point in the future, 

i.e when the vessel reaches a port. Each event in a stream carries a timestamp that denotes the point 

when the event occurred. Events are ordered based on this timestamp. In general, the definition of time 

series data aligns with that of event streams. 

Typically, these systems function according to the popular producer-consumer paradigm. Simply put, in 

the core of this paradigm there are 2 (computer) processes, one that sends events (or messages), also 

called the producer, and one that receives events (or messages), also called the consumer.  

The architecture just described fits perfectly in the Apache Kafka producer-consumer communication 

paradigm, as already described in section 4.3 validating the choice of this technology in the scope of this 

project. 

6.1 Localized Data Capture and processing 

Scalability and the capacity to quickly consume data are the main database requirements for IoT apps. As 

previously stated, NoSQL systems are ideal for IoT since they are designed with significant horizontal 

scalability. Some other popular characteristic of NoSQL databases is the effective use of data storage in 

memory, which would be highly useful for writing throughput and latency. RDBMS systems appear to be 

incomplete because they were not intended to process the quantity of data, or the rate produced by the 

data.  

For the data ingestion in the form of time series data the choice for the DT4GS DB implementation is 

InfluxDB, presented in Section 4.2.  

6.2 Time series-processing and Analysis on Sensors Data 

In this Section we are going to examine anomaly detection as a technique to preprocess data before 

storing it in the DT4GS Dataspace for further utilisation. 

The SoTA techniques briefly described in this chapter are those that are being evaluated by the partners 

while analyzing the available historical high frequency data made available by the LL partners. In addition, 

given that a lot of methods employed in these two areas make use of machine learning models, we deem 

it necessary to understand both how and why a model makes a certain prediction.  

Thus, a summary of approaches for explaining machine learning models is presented last. 
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6.2.1 Anomaly Detection 

An anomaly can be thought of as an unexpected change in the state of a system, which is outside of its 

local or global norm. Pang (2021) divides time series anomalies into three types, in particular point, 

contextual, and collective anomalies. We briefly outline them below: 

Point anomalies refer to data points that deviate remarkably from the rest of the data. Point anomalies 

usually make up for a small percentage of the total data observations. The affected system after 

experiencing these short anomaly intervals returns to its previous normal state. Point anomalies can also 

represent statistical noise or noise produced by faulty sensing equipment.  

Contextual anomalies refer to data points within the expected range of the distribution, but which 

deviate from the expected data distribution, given a specific context. Contextual anomalies if taken in 

isolation may be within the range of expected values, but when taken in the context of the surrounding 

observations constitute anomalies.  

Collective anomalies refer to sequences of points that do not repeat a typical previously observed 

pattern. Individual observations within a collective anomaly may or may not be anomalous, it is only when 

they appear as a group that they arouse suspicion. 

The first two categories, namely, point and contextual anomalies, are referred to as point-based 

anomalies, whereas collective anomalies are referred to as subsequence anomalies. 

Anomaly detection problems are supposed, by definition, to handle and process unpredictable rare 

events characterized by many unknown factors such as their structures, distributions and irregularities. 

Anomalies are typically rare data instances, contrasting to normal instances that often account for an 

overwhelming proportion of the data.  

Schmidl (2022) studies 71 algorithms, categorizing them according to various criteria. One viable 

categorization is by considering the method family into which each algorithm can be grouped. These 

method families characterize the algorithms by their general approach of determining the abnormality of 

specific points or subsequences within the time series. The resulting six method families are summarized 

below: 

• Forecasting methods: use a continuously learned model to forecast a number of time steps based 

on a current context window. The values for the forecasted data points depend solely on the time 

series’ data points in the preceding context window and the previously learned model. The 

forecasted points are then compared to the observed values in the original time series to 

determine how anomalous the observed values are.  

• Reconstruction methods: build a model of normal behavior by encoding subsequences of a normal 

training time series in a low-dimensional latent space. To detect anomalies in a test time series, 

subsequences from the test series are reconstructed from the latent space, and the 

reconstructed subsequences’ values are then compared to the original, observed series values. 

• Encoding methods: are similar to reconstruction methods in that they also encode subsequences 

of a time series in a low-dimensional latent space. However, they do not attempt to reconstruct 

the subsequences from the latent space but compute the anomaly score directly from the latent 

space representations. 

• Distance methods: use specialized distance metrics to compare points or subsequences of a time 

series with each other. Anomalous subsequences are expected to have larger distances to other 
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subsequences than subsequences with normal behavior. Cluster-based distance methods cluster 

similar subsequences together and then compute the distances to dense areas. 

• Distribution methods: fit a distribution model to the data. Anomalies are detected using frequency 

rather than distance. The anomaly scores are usually measured using probabilities and likelihoods 

or subsequences with respect to the prior calculated distributions. 

• Isolation tree methods: build an ensemble of random trees that partition the sample of the test 

time series. For the tree construction, the methods recursively select random features and 

random split values as tree nodes to eventually isolate the samples in the tree leaves. The number 

of splits required to isolate a sample is a measure described by the average path length over all 

random trees in the ensemble. Because anomalous samples are easier to separate than normal 

samples, they are on average closer to the tree root and have noticeably shorter paths. For this 

reason, path lengths are characteristic of the normality of samples and, hence, their reciprocal 

value translates into anomaly scores. 

Anomaly detection algorithms can also be classified by their learning type, i.e unsupervised, supervised, 

and semi-supervised. However, both Pang (2021) and Schmidl (2022) point out that supervised learning 

approaches are quite unpopular in practice and thus the majority of techniques developed in anomaly 

detection research is based mainly on semi-supervised and purely unsupervised settings and methods.  

Unsupervised Methods do not require a set of labeled samples to fit the parameters of a particular 

machine-learning model. There are multiple algorithms proposed to approach anomaly detection in an 

unsupervised fashion. Below are presented some, that are actually evaluated by the partners.  

• SAND (Streaming Subsequence Anomaly Detection), proposed by Boniol (2021). SAND supports 

real-time analytics, as the algorithm is online and does not require access to the entire dataset. 

Anomalies are detected based on their distance to a data structure that represents normal 

behavior. Moreover, SAND does not require domain knowledge and thus can detect domain-

agnostic anomalies. Finally, the algorithm is able to adapt to distribution drifts, i.e., to changes in 

the data generation process. 

• Convolution Ensembles: Another state-of-the-art unsupervised anomaly detection method, 

proposed by Campos (2022). The ensemble employs multiple basic anomaly detection models 

built on convolutional sequence-to-sequence autoencoders. An autoencoder consists of an 

encoding phase that compresses a time series T into a compact representation and a decoding 

phase that reconstructs an output time series T’ from this representation. The representation is 

only able to capture patterns that reflect normal behavior in the original time series and not 

anomalies. The difference between observations in T and in T’ is called the reconstruction error. 

Intuitively, the higher the reconstruction error which means less likely to be from the input 

distribution, the higher the anomaly score. A threshold can be set to discriminate anomaly from 

normality.  

• Anomaly detection based on transformers has been introduced for example by Tuli (2022). 

Transformers proved to be more efficient than LSTMs, mostly due to parallel computing in their 

architecture. Tuli (2022) proposed to combine transformers with neural generative models for 

better reconstruction models in anomaly detection. In particular, they propose an adversarial 

training procedure to amplify reconstruction errors. GAN adversarial training is processed by two 

transformer encoders and two transformer decoders to gain stability. A review of the application 
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of Transformers to important time series tasks, including forecasting, anomaly detection, and 

classification, is presented by Wen (2022). 

 

6.3 Forecasting 

Machine Learning Architectures for Time Series Forecasting are particularly suitable for finding the 

appropriate complex nonlinear mathematical function to turn an input into an output. Hence, machine 

learning models provide a means to learn temporal dynamics in a purely data-driven manner. Here are 

briefly presented some possible approaches to the Time Series Forecasting task: 

• Artificial Neural Networks (ANNs) can be employed for nonlinear processes that have an unknown 

functional relationship and as a result, are difficult to fit. The main concept with ANNs is that 

inputs are passed through one or more hidden layers each of which consists of hidden units, or 

nodes before they reach the output variable. 

In time series forecasting, as in other domains, the emergence of competing neural network architectures 

has relegated simple ANNs to the background. 

• Convolutional Neural Networks (CNNs) are a specific kind of deep neural networks, proposed for 

and mostly dedicated to image analysis and aimed at preserving spatial relationships in the data, 

with very few connections between the layers. Having connections from all nodes of one layer to 

all nodes in the subsequent layer, as in regular ANNs, proved extremely inefficient and thus CNNs 

arose from the observation that a careful pruning of the connections, based on domain 

knowledge, boosts performance. 

• Recurrent Neural Networks (RNNs) were designed to handle sequential information as stated in 

Lipton (2015). Typically, RNNs are capable of making predictions over many time steps, in time 

series. An RNN achieves the same task at each step (with varying inputs): the sequence (x1, x2 , · 

· · , xt, xt+1, · · · ) is input to the RNN, element by element (one step at a time). An RNN performs 

the same task for each element of a sequence, with the output being dependent on the previous 

computations. The weights are context-dependent and dynamically updated for each time step.  

• Long short-term memory networks (LSTMs) are the most widely-used subclass of RNNs, as they 

perform better than RNNS in capturing long dependencies. LSTMs are intrinsically RNNs in which 

changes were introduced in the computation of hidden states and outputs, using the inputs. They 

were developed to address some limitations that occurred during the training process of regular 

RNNs. 

• Transformers, like RNNs, were designed to handle sequential data and tackle problems in natural 

language processing (for instance, translation). Transformers were repurposed to address 

forecasting in time series. The encoder and decoder form the two parts of the transformer’s 

architecture. The encoder mainly consists of an input layer, an input encoding, a positional 

encoding mechanism, and a stack of identical encoder layers. In the seminal work of Vaswani 

(2017), the decoder is composed of an input layer, an input encoding, a positional encoding 

mechanism, a stack of identical decoder layers and an output layer.  

• Autoforecast (Optimal Forecasting Model Selection) (Abdallah 2022) is a meta-learning approach 

that allows for the quick inference of the best time-series forecasting model for an unseen 

dataset. Given a new time series dataset, AutoForecast selects the best performing forecasting 
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algorithm and its associated hyperparameters without having to first train or evaluate all the 

models on the new time series data to select the best one. The meta-learner is trained on the 

models’ performances on historical datasets and the time-series meta-features of these datasets.  

 

6.4 ML Tracking Tools 

To enable DT4GS to properly track the performance of developed machine learning models and their 

version history, we consider third-party software that could assist us in managing their whole lifecycle. 

After all, current machine learning methods often require thorough experimentation. This translates to 

training a particular model instance, usually for prolonged periods of time, by feeding it with a large set 

of data observations, then evaluating the model and measuring its performance by using standardized 

metrics and finally trying to interpret the results and draw valid conclusions. 

There are several tools available for tracking and managing machine learning experiments. To our 

knowledge, two of the most complete ones are MLflow and Weights & Biases. These two solutions are 

the ones currently being studied by the DT4GS consortium in order to identify the most suitable solution 

for the project's needs. In this chapter we present a brief description of the capabilities and structures of 

the tools. 

 

6.4.1 Mlflow 

MLflow42 is an open-source platform that helps manage the whole machine learning lifecycle. Its features 

include tracking experiments, packaging code into reproducible runs, and sharing and deploying models. 

MLflow currently offers four components: 

● MLflow Tracking: An API to log parameters, code versions, metrics, and output files when 

conducting machine learning experiments. The results of each experiment can be then visualized 

and compared using an interactive UI. Tracking can also be used in any environment (for example, 

a standalone script or a notebook) to log results to local files or to a server, then compare multiple 

runs.  

● MLflow Projects: A code packaging format for reproducible runs using Conda and Docker. Each 

project is simply a directory with code or a Git repository and uses a descriptor file to specify its 

dependencies and how to run the code. An MLflow Project is defined by a simple YAML file called 

MLproject. Projects can specify their dependencies through a Conda environment. A project may 

also have multiple entry points for invoking runs, with named parameters. You can run projects 

using the command-line tool, either from local files or from a Git repository. MLflow will 

automatically set up the right environment for the project and run it. In addition, if you use the 

MLflow Tracking API in a Project, MLflow will remember the project version executed (that is, the 

Git commit) and any parameters. You can then easily rerun the exact same code. 

● MLflow Models: Α convention for packaging machine learning models in multiple formats called 

"flavors". MLflow offers a variety of tools to help you deploy different flavors of models. Each 

MLflow Model is saved as a directory containing arbitrary files and an MLmodel descriptor file 

that lists the flavors it can be used in. In this way, models (from any ML library) can be easily 

 
42 https://mlflow.org/ 
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deployed to batch and real-time scoring on platforms such as Docker, Apache Spark, Azure ML, 

and AWS SageMaker.    

● MLflow Model Registry: A centralized model store, set of APIs, and UI, to collaboratively manage 

the full lifecycle of MLflow Models. It provides model lineage (which MLflow experiment and run 

produced the model), model versioning, stage transitions (for example from staging to 

production), and annotations. 

 

6.4.2 Weights & Biases 

Weights and Biases 43is a platform for machine learning experiment tracking, dataset versioning, and 

model management. Its interactive dashboards facilitate visualizing model performance, training metrics, 

and model predictions. The functionality supported by Weights and Biases is divided into 6 main 

components: 

● Experiments: Tracks, compares, and visualizes ML experiments. Logged model hyperparameters, 

output, and metrics are streamed live into interactive graphs and tables. In this way, it is easy to 

evaluate and compare the performance of multiple ML models simultaneously. CPU and GPU 

usage can also be monitored, in order to identify potential training bottlenecks and avoid wasting 

expensive resources. There is rich support for logging media of various forms, including images, 

video, audio, and 3D objects. Dataset versioning is also provided with deduplication and diffing 

handled internally by Weights & Biases. 

● Reports: Allows for organizing and embedding visualizations, describing findings, sharing 

updates with collaborators, and more. More specifically, updates and outcomes of developed 

machine learning projects can be shared efficiently. Consequently, explaining how a particular 

model works or whether its subsequent versions improved becomes more straightforward by 

integrating graphs and other visualizations into shared reports. Furthermore, there is support for 

making live comments, and taking snapshots of work logs. Finally, reports can be easily exported 

as a LaTeX zip file or converted to PDF.  

● Artifacts: Provides dataset versioning, model versioning, and tracking dependencies and results 

across machine learning pipelines. An artifact in this context is a versioned folder of data. Entire 

datasets can be stored directly in artifacts, or artifact references can be used to point to data in 

other systems like S3, GCP, or other user-defined systems. Dependency graphs can be built on 

users’ premises or in the cloud to trace the flow of data through pipelines. This ensures that 

keeping track of which datasets are used as input to the tested models is as effortless as possible. 

Moreover, this component tracks the evolution of users’ data over time and stores checkpoints 

of the best-performing models.  

● Tables: Logs, queries, and analyzes tabular data. In essence, it helps users to better understand 

their datasets, visualize model predictions, and share insights in a central dashboard. Changes can 

be precisely compared across models, epochs, or individual examples. Importantly, this aids in 

realizing higher-level patterns in the data, and capturing and communicating valuable insights 

with visual samples.   

 
43 https://wandb.ai 

https://wandb.ai/
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● Sweeps: Automates hyperparameter search and explores the space of possible models. Sweeps 

basically combines the benefits of automated hyperparameter search with visualization-rich, 

interactive experiment tracking. Users can pick from popular search methods such as Bayesian, 

grid search, and random to search the hyperparameter space. It also supports scaling and 

parallelizing Sweep jobs across one or more machines. 

● Models: The W&B Model Registry is used as a central system of record for models. It creates 

Registered Models to organize the best model versions for a given task. Besides, it tracks models 

moving into staging and production. A detailed history of all changes is maintained, including 

which user moved a model to production. 

7 Conclusions 

DT4GS is aimed at making Digital Twin technology readily available to the shipping industry to support 

accelerated transition to zero emissions. Within this aim, Work package 2 aims to develop an Open Ship 

Operational Optimization Digital Twining Infrastructure, built on top of a Waterborne Sector Dataspace 

to support shipping companies to build their own ship specific DTs.  

This Deliverable has defined the user requirements, high level architecture and implementation 

technologies selection for the Dataspace. 

First, task 2.2 whose output is described in this Deliverable, surveyed the Industry requirements and 

information architectures for shipping and maritime, focusing in particular on the latest paradigms such 

as Internet of Things and Internet of Ships. The task was informed also by international industry standards 

such as Industrial Data Spaces.  

Next, the task analysed the user data requirements as described by the Project’s Living Labs in Deliverable 

1.1. From that analysis, the task focused on data processing requirements, including storage, real time, 

volumes, security and so on. This led to the definition of a high-level software architecture, in terms of 

ship and shore-based software modules, to realise the required functionality of the Dataspace and adhere 

to the users’ nonfunctional requirements for data security, sovereignty, and so on. 

Based on that high level architecture, the task selected implementation technologies that meet the 

Project’s requirements. The main criteria for the selection of technologies for data storage, 

communications and processing, was that such technologies would have to be already proven in maritime 

and/or other industry domains. Additionally, such technologies would have to meet current and future 

maintenance, evolution and cost criteria, in order to be acceptable by the Project’s stakeholders. 

Following that, the Deliverable discussed the deployment and utilisation of the dataspace architecture in 

maritime analytics applications. 

The overall strategy employed in this Deliverable, therefore, has been to adopt suitable solutions from 

broader domains to the maritime context, in order to reap benefits from adoption, support, and future 

developments. The Dataspace infrastructure described in this Deliverable provides a solid foundation for 

further developments, in the remaining of the DT4GS Project, specifically, a refinement of the 

architecture and reference implementations of the architecture in the Project’s Living Labs. 

Important work dimensions in the next six months are the potential development of the DT4GS 

dataspace not only to support the LL use cases but also the broader knowledge transfer on 

decarbonisation technologies. For this close cooperation with T3.1, the DT4GS knowledge hub 
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incorporating outputs from T1.1, T1.2 and T1.3 as well asT2.4 DT4GS Model Blueprints and Open Model 

Library is planned. 

Further, mainly through the knowledge hub task and DT4GS Alliance activities the industry perspective 

of the dataspace will be emphasized, utilising data available in interconnected Digital Twins (DTs). 

Interconnected DTs represent 1) ships equipped with one or more decarbonisation solutions or 2) 

decarbonisation equipment test facilities or related DTs. The interface of such nodes are connectors to 

be developed and reported in the v2 deliverable. 
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Annex I – Base code for data stream from InfluxDB database to an 

external source via Kafka Connect 

The code presented in this annex is a first base implementation in Java of the data stream from a InfluxDB 

database to an external source utilising Kafka Connect libraries. InfluxDBKafkaConnector class extends 

the SourceTask class from the Kafka Connect API. The start method is used to connect to the InfluxDB 

database using the connection information provided in the task configuration. The poll method is used 

to execute the query and convert the results to SourceRecord objects, which can be consumed by a Kafka 

topic. The stop method is used to close the connection to the InfluxDB database. Note that the 

conversion from QueryResult to SourceRecord is showed as an example implementation and will be 

needed to be adapted given the LL data to process. 

 

1. import org.apache.kafka.connect.source.SourceRecord; 

2. import org.apache.kafka.connect.source.SourceTask; 

3. import org.influxdb.InfluxDB; 

4. import org.influxdb.InfluxDBFactory; 

5. import org.influxdb.dto.Query; 

6. import org.influxdb.dto.QueryResult; 

7.   

8. import java.util.List; 

9. import java.util.Map; 

10.   

11. public class InfluxDBKafkaConnector extends SourceTask { 

12.   

13.   private InfluxDB influxDB; 

14.   private String databaseName; 

15.   private String query; 

16.   

17.   @Override 

18.   public void start(Map<String, String> props) { 

19.     String url = props.get("influxdb.url"); 

20.     String username = props.get("influxdb.username"); 

21.     String password = props.get("influxdb.password"); 

22.     databaseName = props.get("influxdb.database"); 

23.     query = props.get("influxdb.query"); 

24.   

25.     influxDB = InfluxDBFactory.connect(url, username, password); 

26.   } 
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27.   

28.    

29.     @Override 

30.     public List<SourceRecord> poll() throws InterruptedException { 

31.       QueryResult result = influxDB.query(new Query(query, databaseName)); 

32.       List<SourceRecord> records = new ArrayList<>(); 

33.       for (QueryResult.Result res : result.getResults()) { 

34.         for (QueryResult.Series series : res.getSeries()) { 

35.           List<List<Object>> values = series.getValues(); 

36.           for (List<Object> value : values) { 

37.             Map<String, Object> sourcePartition = new HashMap<>(); 

38.             sourcePartition.put("database", databaseName); 

39.             sourcePartition.put("series", series.getName()); 

40.             Map<String, Object> sourceOffset = new HashMap<>(); 

41.             sourceOffset.put("index", value.get(0)); 

42.             SourceRecord record = new SourceRecord( 

43.                 sourcePartition, 

44.                 sourceOffset, 

45.                 "influxdb", 

46.                 null, 

47.                 series.getColumns(), 

48.                 value.subList(1, value.size())); 

49.             records.add(record); 

50.           } 

51.         } 

52.       } 

53.       return records; 

54.     } 

55.   

56.   @Override 

57.   public void stop() { 

58.     influxDB.close(); 

59.   } 

 

 
 


