
Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 1

Digital Twins for Green Shipping

Document Information

Grant Agreement No 101056799 Acronym DT4GS

Full Title
Open collaboration and open Digital Twin infrastructure for

Green Smart Shipping

Call
HORIZON-CL5-2021-D5-01: Clean and competitive solutions for

all transport modes

Topic
HORIZON-CL5-2021-

D5-01-13
Type of action RIA

Coordinator INLECOM GROUP

Project URL https://dt4gs.eu/

Start Date 01/06/2022 Duration 36 months

Deliverable D2.2 Work Package WP 2

Document Type OTHER Dissemination Level PU

Lead beneficiary FINCANTIERI NEXTECH (FINC)

Responsible author Alessandro Caviglia (FINC)

Contractual due date 28/02/2023
Actual submission

date
28/02/2023

D1.1: Value-oriented Analysis in enabling Shipping
Decarbonisation

Ref. Ares(2023)1463315 - 28/02/2023

javascript:;
javascript:;
https://dt4gs.eu/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 2

Disclaimer and acknowledgements

This project has received funding from the Horizon Europe framework programme under

Grant Agreement No 101056799

Disclaimer

Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or CINEA. Neither the European Union nor
the granting authority can be held responsible for them.

While the information contained in the document is believed to be accurate, the authors
or any other participant in the DT4GS consortium make no warranty of any kind with regard
to this material including, but not limited to the implied warranties of merchantability and
fitness for a particular purpose.

Neither the DT4GS Consortium nor any of its members, their officers, employees, or agents
shall be responsible or liable in negligence or otherwise howsoever in respect of any
inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the DT4GS Consortium
nor any of its members, their officers, employees, or agents shall be liable for any direct or
indirect or consequential loss or damage caused by or arising from any information advice
or inaccuracy or omission herein.

Copyright message

© DT4GS Consortium. This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published material and of the
work of others has been made through appropriate citation, quotation, or both.
Reproduction is authorised provided the source is acknowledged.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 3

Document information

Contributors

Contributor Name Organisation (Acronym)

Alessandro Caviglia FINCANTIERI NEXTECH (FINC)

Takis Katsoulakos INLECOM GROUP (INLE)

Bill Karakostas INLECOM GROUP (INLE)

Antonis Antonopoulos KONNECTA SYSTEMS LIMITED (KNT)

Dimitris Skoutas ATHENA RESEARCH CENTER (ATH)

Austin Kana Technical University of Delft (TUD)

Konstantinos Papoutsis EURONAV (ENAV)

Document history

Version Date % Changes Author

0.1 01/09/2022 1% ToC Draft Alessandro Caviglia (FINC)

0.2 16/12/2022 50% Added content to chapters Alessandro Caviglia (FINC)

 16/01/2022 Provided contributions KNT, ATH

0.3 17/01/2023 80% Added more content to all chapters Alessandro Caviglia (FINC)

0.8 17/2/2023 95% Restructuring and new content INLE

0.9 22/2/2023 Review, Refinement KNT, TUD, ENAV

1.0 24/02/2023 100% Final version Alessandro Caviglia (FINC)

Quality Control (includes peer & quality control reviewing)

Date Version Name (Organisation) Role & Scope

02/09/2022 0.1 Efstathios Zavvos (VLTN) QM ToC Approval

18/12/2022 0.2 Efstathios Zavvos (VLTN) 50% Draft approval

07/01/2023 0.3 Efstathios Zavvos (VLTN) 80% Draft approval

24/02/2023 0.9 Bill Karakostas (INLE) 100% PM Review

27/02/2023 1.0 Efstathios Zavvos (VLTN) Final Version Approval

`

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 4

Executive summary

Deliverable 2.2 presents the proposed structure and components of the DT4GS Dataspace.

This document represents version 1 of the two deliverables that will be released in the

scope of the DT4GS project. The second version, describing the final structure of the

Dataspace will be release on the 34th month of the project. Certain aspects of this

document build upon and expand the "Transferable DT4GS architecture" (D2.1), which is

currently in the finalization stage and is scheduled for release in the 12th month.

Within a maritime context, the Digital Twin enables services mainly focused on decision

support/ decision-making, for the purpose of, at company level, optimizing operations and

at industry level facilitating the greening transition. DT4GS Dataspace has two main

functionalities; to establish the bidirectional data link between the physical vessel, its

digital counterpart and components providing the data required for the creation and

evolution of the Digital Twin, and additionally to support sharing of data between shipping

actors/stakeholders.

The primary objectives of this document are to establish the current state of the art, outline

the technical requirements, conduct a comprehensive survey of relevant technologies, and

provide an initial definition of the constituent elements comprising the DT4GS dataspace.

This is conducted accounting for the requirements defined by the consortium partners but

also the state of the art and the intended actors that will actively interact with the

Dataspace both for configuration tasks and for the actual utilisation of the Digital Twin.

The document presents the needs that the Dataspace have to address to ensure the

communication, store and computational capabilities necessary to allow for the

operational use of the Digital Twin.

Concerning deliverable’s organisation, the next section is devoted to the discussion of IT

architectures for shipping/maritime, in particular architectures that enable the Internet of

Things (and in this context, the Internet of Ships). Then, the Section 3 discusses the data

requirements for the DT4GS project pilots, in terms of data types, storage and processing

requirements etc. This leads to the overview of the Dataspace architecture, and the

analysis and evaluation of technical choices for data storage, processing and

communicating, and finally in Section 4, the selection of the technological solutions that

implement them. Section 5 provides more detailed description of the dataspace

components, starting from a central component, a Message Broker, developed in Apache

Kafka that is responsible for the message exchanges utilised for data transmission within

the Dataspace. The technology implied for the communication ship-shore is described

highlighting the customisation needs due to the different configurations of the ship

informative system and IoT infrastructure between the different ships that will be utilised

as Living Labs during the project. Lastly, a brief description of the possible external data

sources is presented. Section 6 discusses the different analytics applications envisaged in

the Living Labs, and how the Dataspace supports them.

This document, which is delivered in the first part of the project, reflects developments

that are currently in progress towards the implement the first version of the Dataspace.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 5

Contents

1 Introduction .. 9

1.1 DT4GS Overview ... 9

1.2 Mapping DT4GS Outputs .. 10

1.3 Deliverable Overview and Report Structure .. 13

2 State of the Art review .. 14

2.1 Maritime data characteristics ... 14

2.2 Ship information architectures ... 14

2.3 Internet of ships .. 15

2.4 The international Data Spaces (IDS) Standards .. 16

2.4.1 IDS in the maritime domain .. 16

2.5 The Information Architecture for DT4GS Dataspace .. 18

3 Data Requirements for DT4GS.. 20

3.1 Data aspects to be considered .. 20

3.2 Actors participating to the Dataspace .. 20

3.3 Data Requirements from Living Labs ... 22

3.4 Overview of Data types in DT4GS and their processing requirements 23

3.5 Overview of the System Architecture of DT4GS Dataspace 24

3.6 DT4GS Dataspace ... 26

3.6.1 Data fabric ... 26

3.6.2 Knowledge Graph ... 26

4 Evaluation of data processing infrastructures and selection criteria 28

4.1 Knowledge Graph Selection .. 28

4.2 IoT Database Selection ... 28

4.2.1 Time series databases .. 29

4.2.2 Rationale for selecting Influx DB ... 29

4.2.3 InfuxDB Technology Stack ... 30

4.2.4 Rationale for selecting Mongo DB ... 31

4.3 Messaging infrastructures selection criteria ... 31

4.3.1 Messaging frameworks ... 31

4.3.2 Stream Processing architectures .. 32

4.3.3 Kafka .. 32

5 Detailed Architecture description .. 34

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 6

5.1 The Central Connector Module ... 34

5.2 The Messaging System ..35

5.2.1 The Kafka Cluster ...35

5.3 Internal Connectors Nodes .. 36

5.4 External Connectors Nodes .. 37

5.4.1 Dataspace Connectors Nodes... 37

5.5 Data Catalog and Lineage ... 37

5.6 The Platform Monitoring Interface ... 38

5.7 Security Considerations ... 39

5.7.1 Device authentication and encryption .. 39

5.7.2 Sensor and Gateway Authentication .. 41

5.8 Deployment ... 41

5.9 Data storage ... 43

5.10 Internal Connectors .. 44

5.11 Internal Connectors integration with the Central Connector Module 45

5.12 Blockchain Enabled Connectivity ... 45

5.13 Data Streaming Modalities .. 45

5.14 On board data cleaning .. 45

5.15 External Connectors ... 46

5.16 External data ... 47

5.16.1 World Weather Online.. 47

5.16.2 Meteoblue Packages API ... 49

5.16.3 National Oceanic and Atmospheric Administration API............................... 49

5.17 External Connectors integration with the Central Connector Module 50

6 Analytics Applications ... 51

6.1 Localized Data Capture and processing ... 52

6.2 Time series-processing and Analysis on Sensors Data .. 52

6.2.1 Anomaly Detection ..53

6.3 Forecasting ..55

6.4 ML Tracking Tools .. 56

6.4.1 Mlflow ... 56

6.4.2 Weights & Biases ... 57

7 Conclusions ... 58

8 References .. 60

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 7

Annex I – Base code for data stream from InfluxDB database to an external source via Kafka

 63

List of Figures

Figure 1 DT4GS approach ... 9

Figure 2 Different maritime information models (source EU MUNIN Maritime Unmanned

Navigation through Intelligence in Networks Project) ... 14

Figure 3 Multitiered IoT architecture .. 15

Figure 4 The IDS Connector concept .. 17

Figure 5 Dataspace information architecture. ... 19

Figure 6 DT4GS ecosystem actors .. 22

Figure 7 DT4GS Dataspace components and link with components of the DT4GS DT

architecture .. 24

Figure 8 Example of Knowledge Graph to describe the computational steps to obtain

CO2e and FOC given the required models and data .. 27

Figure 9 Architectural diagram of the DT4GS infrastructure with highlighted the

components of the central connector module. ..35

Figure 10 Example of Grafana Dashboard to monitor a Kubernetes cluster 39

Figure 11 Example of sensor authentication and data exchange architecture with CHARIOT

 ... 40

Figure 12 Architectural diagram of the DT4GS infrastructure with highlighted the

components of the data storage. .. 43

Figure 13 Architectural diagram of the DT4GS infrastructure with highlighted the

components of the Internal Connectors. .. 44

Figure 14 Architectural diagram of the DT4GS infrastructure with highlighted the

components of the external connector modules. .. 46

List of Tables

Table 1 Glossary of acronyms and terms. .. 8

Table 2 Adherence to DT4GS Grant Agreement deliverable and work description. 10

Table 3 Summary of Dataspace internal and external actors’ roles 20

Table 4 Data types and requirements in DT4GS .. 23

Table 5 World Weather Online API available data .. 47

Table 6 Meteoblue Packages API available data .. 49

Table 7 CDO database available data .. 49

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 8

Glossary of terms and acronyms used

Table 1 Glossary of acronyms and terms.

Acronym / Term Description

ANN Artificial Neural Network

API Application Programming Interface

AWS Amazon Web Services

CNN Convolutional Neural Networks

DS Dataspace

DT Digital Twin

DT4GS Digital Twin for Green Shipping

ERP Enterprise Resource Planning

GCP Google Cloud Platforms

HF data High Frequency Data

HQ Headquarters

IDS International Dataspace

IIOT Industrial Internet of Things

IoS Internet of Ships

IoT Internet of Things

KG Knowledge Graph

LL Living Labs

LSTM Long short-term memory

ML Machine Learning

PMS Property Management System

REST Representational State Transfer

RDBMS Relational Database Management System

RNN Recurrent Neural Network

SAND Streaming Subsequence Anomaly Detection

SotA State of the Art

VM Virtual Machine

WP Work Package

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 9

1 Introduction

1.1 DT4GS Overview

As digitalisation in the shipping industry has been maturing over the recent years, DT

adoption will be dependent on establishing trusted and convincing DT application

exemplars and ensuring that ship operators and other industry stakeholders can set up

their own DTs based on their own business models, building their own confidential

knowledge at reasonable cost. This requirement is at the heart of the DT4GS approach as

illustrated in the Figure 1.

Figure 1 DT4GS approach

DT4GS is aimed at providing a virtual representation of ships and physical transport entities

with a bi-directional communication links from sensing to actuation/control and data driven

simulation and AI based decision support. In DT4GS extra emphasis will be given to DT

applications onboard the ship utilising advanced IoT computing infrastructure and machine

learning techniques. DT4GS therefore, creates a common point of reference in the digital

world for shipping vessels, which different stakeholders can access and utilise and adapt

in line with their own internal business needs.

To reach its goals DT4GS is divided into 6 WPs each with different goals, tasks, and

deliverables.

This deliverable details the work in progress in Work Package 2 and in particular Task 2.2,

which is led by the partner Fincantieri NexTech, responsible for the definition and

implementation of the DT4GS Dataspace. T2.2 is divided into sub-tasks, each aimed at

implementing the key components for data storage and communication between the

various entities and applications making up the Dataspace.

Given that this deliverable is written during the first part of the project, while the

development of the Dataspace components is still in progress and overall DT4GS

Architecture is not yet finalised, the contents of the deliverable will be revised and refined

in the next version. The purpose of this deliverable is therefore to provide architectural

perspectives and report on components needed to progress with the WP2 early

prototyping. However, open topics are underlined in the body of the document and will

be described in their final implementation in the context of D2.3 “DT4GS (Green Shipping)

Dataspace v2” due month 34 of the project.

Ship Physical world Ship Digital TwinData
Asset/ System Monitoring

Interventions
Control

Improved decisions

Company-centric Confidentiality preserving DT
Improved decisions - Optimisation [operation, retrofitting, newbuilds]

DT4GS Open Digital
Twin Framework

Configuration
Updates

Support
Reporting

EDGE

DT4GS Modeling Framework and Models
and Blueprints Directory

DT4GS Data Space, Semantics and
Connectors

Geen Ship Operation Optimisation
Reference Digital Twin

Zero-emission shipping Virtual Testbed
and Decision Support System

(retrofit / new build)

Common DT
Dataspace

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 10

1.2 Mapping DT4GS Outputs

The purpose of this section is to map DT4GS Grant Agreement commitments, both within the formal Deliverable and Task description, against the current

document.

Table 2 Adherence to DT4GS Grant Agreement deliverable and work description.

DT4GS GA

Component

Title

DT4GS GA Component Outline Respective Document

section(s)

Justification

DELIVERABLE

D2.2 DT4GS

(Green

Shipping)

Dataspace v1

Connectors Module 1st Version, IoT infrastructure,

Internal and External Connectors matching selected

priority use cases. This deliverable includes the outputs

of T2.2.

Section 5 (chapters

5.1,5.2,5,3, 5.4)

Those chapters describe all the components

and technologies to be implemented to

develop the DT4GS DS as per GA.

TASK

ST2.2.1 Provide

a central

connectors

module

Enable (a) End-to-end encrypted device authentication

management; (b) Streaming and Queuing message

exchanges (Apache Kafka, Apache Pulsar); (c)

Deployment automation (Kubernetes) supporting

cluster configurations for increased message loads and

efficient processing; (d) provide a management and

configuration User Interface (UI) supporting embedded

monitoring and visualisation (e.g. Grafana, ELK); (e)

Section 5 (chapters

5.1,5.2,5.5,5.6,5.7,5.8,

5.11,5.17)

In this chapter is presented the actual

solution as projected by DT4GS partners to

augment the DT4GS Dataspace with the

communication capabilities required as

defined in the GA. The functionalities of the

Central Connector module are described also

with respect to the connection with other

components of the dataspace.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 11

integrate CHARIoT’s blockchain-based PKI integration

for sensor / gateway authentication and blockchain-

aided encryption of IoT endpoints; (f) implement Smart

contracts for process automation (certification process,

contract process), secure IOT, DT data transparency and

trust.

ST2.2.2 Create

the DT4GS IoT

infrastructure

Support automated localised data capture, processing,

and event-based data flows for better visibility,

performance management, and enhanced automation

of vessel operations. Implement components for time

series processing and analysis, including anomaly

detection, change detection, and forecasting, as well as

complex event processing by combining data from

multiple sensors.

Section 5 (chapters 5.12,

5.14), Section 6

An overall description of the possible

algorithms and approaches as per the SotA

literature is presented. Some tools

supporting the evaluation of the outputs are

presented. The evaluation is still ongoing by

the project partners, working on the available

data to grant the required data quality to

enable the DT4GS DT operational

functioning.

ST2.2.3.

Develop

Internal

connectors for

ship

subsystems

Based on the LL requirements and the central

connectors module, supply the necessary connectors to

link the ship subsystems to the DT4GS infrastructure.

Develop and deploy specific APIs (wrappers) to these

systems enhanced and semantically enriched via

metadata of the DT4GS ontology. Link to the central

connectors’ module, configuring blockchain enabled

connectivity deploying event-based data streaming

components.

Section 5 (subchapter

5.7.1, chapters

5.10,5.11,5.14)

The solutions for the implementation

described in this chapter reflect the actual

implementation described in the GA of the

project. Security topics, depending on the

requirements of the LL, still in gathering

phase, will be addressed as per GA

description.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 12

ST2.2.4.

External

Connectors

Based on the LL requirements supply the necessary

connectors to setup the links between the central

connector’s module and external data resources. APIs

developed and deployed in the context of the LLs will

become available via an API Registry. APIs and metadata

descriptions will be semantically enriched, using the

DT4GS ontology to enable and facilitate semantic search

and interoperability across the LL deployed federated

solutions.

Section 3 (subchapter

3.6.2), Section 5

(chapter 5.15,5.16,5.17)

The solutions for the implementation

described in this character reflect the actual

implementation described in the GA of the

project. A first batch of possible external

sources to be considered to enrich the DT4GS

Dataspace data are presented. Section 3.6.2

explains a solution to implement and

leverage external data in the context of the

DT operational functioning.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 13

1.3 Deliverable Overview and Report Structure

In this section, a description of the Deliverable’s Structure is provided outlining the respective Chapters

and their content.

Section 1 Introduction: Overview of DT4GS, Mapping of DT4GS Outputs and overview and structure of

the deliverable.

Section 2 Review of the State of the Art (Maritime data characteristics, Ship information architectures,

Internet of ships, the international Data Spaces (IDS) Standards), and the overall Information

Architecture for Dataspace.

Section 3 Data Requirements for DT4GS including data aspects to be considered, actors participating to

the Dataspace, Data Requirements from Living Labs and overview of Data types in DT4GS and their

processing requirements. Also, the system architecture of DT4GS Dataspace, data fabric and Knowledge

Graphs.

Section 4 Evaluation of data processing infrastructures and selection criteria, including Knowledge Graph

technology Selection, IoT/time series database selection, and messaging infrastructures selection.

Section 5 Detailed description of the Dataspace architecture including the Central Connector Module ,

the Messaging System, the Kafka Cluster, Internal and external Connectors. Also, considerations for data

cataloguing and lineage, security, and device authentication and encryption. Also, discussion of platform

deployment and monitoring aspects. Additionally, data pre-processing and cleansing, including data from

external sources.

Section 6 Analytics application including Time series-processing and Analysis of Sensors Data for anomaly

detection. Additionally, discussion on Machine Learning deployment environments to host the analytics

applications.

Section 7 Conclusions of the work described in this Deliverable.

Section 8 References

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 14

2 State of the Art review

2.1 Maritime data characteristics

Maritime data comes from a variety of sources including the ship bridge data network, conventional

automation systems, new ‘e-ship’ systems, performance monitoring, reporting, Automatic Identification

System (AIS), Vessel Traffic Services (VTS), weather and other environmental monitoring, port data and

others. This creates issues related to data ownership, heterogeneity, quality etc, that a data processing

infrastructure such as the one to be developed in DT4GS needs to address.

 Due to the mobility of ships and intermittent communications, data quality may suffer resulting in

incomplete, inaccurate, or unreliable data. These issues hinder the seamless use of ship data in decision

making applications. Overall, the large volume and variety of data are turning data mining, big data

analytics, and data visualization into significantly challenging issues in the maritime domain due to high

computation and communication complexities. In addition, the integration of data management

technologies that span multiple ships and ports is still an open challenge mainly because of unreliable and

slow transmissions as well as incompatible application programming interfaces. The ability to perform

timely and cost-effective analytical processing of such large datasets to extract deep insights is a key

ingredient for success. These insights can drive automated processes for optimizing ship and fleet

operations, and importantly knowledge transfer on decarbonisation solutions and complying with

regulation for reducing emissions.

2.2 Ship information architectures

Many maritime information architectures have been developed in the past years, as shown in Figure 2

from the EU MUNIN project.

 Figure 2 Different maritime information models (source EU MUNIN Maritime Unmanned Navigation through Intelligence in

Networks Project)

Each of these models covers a different aspect of maritime such as geospatial information (e.g., ENC),

safety (e.g., AIS) or reporting (e.g., Manifests, FAL forms). Because of that, the structure and processing

requirements of such information models vary greatly.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 15

2.3 Internet of ships

The Internet of Ships (IoS) paradigm1 has recently emerged following the concept of e-navigation and the

advancements of Internet of Things (IoT) technologies. According to IoT, things/devices/objects are

transformed from conventional to smart by sensing, communicating and processing. In the maritime

world, these things can be any physical device or infrastructure associated with a ship, a port, or the

transportation itself. Figure 3 illustrates how smart sensors and devices, networks middleware and

applications realise the Internet of Ships.

Figure 3 Multitiered IoT architecture 2

1 Sheraz Aslam, Michalis P. Michaelides, and Herodotos Herodotou, Internet of Ships: A Survey on Architectures,
Emerging Applications, and Challenges. IEEE INTERNET OF THINGS JOURNAL, VOL., NO., MAY 2020
2 Giménez, Pablo & Llop, Miguel & Olivares, Eneko & Palau, Carlos & Montesinos, Miguel & Llorente, Miguel. (2020).
Interoperability of IoT platforms in the port sector.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 16

2.4 The international Data Spaces (IDS) Standards 3

An obstacle for a wider deployment of ship data use and sharing in an industrial context is the lack of

trust in data and its sharing mechanisms. To counter this problem, the International Data Space

Association (IDSA) has developed an architecture to define a standard for data exchange on a trusted

and self-regulated basis.

The International Data Spaces (IDS) standard creates the basis for the future of a global digital economy.

It combines a technical architecture and governance models to facilitate the secure and standardized

exchange and easy linking of data in data spaces. The IDS standard guarantees data sovereignty. It allows

companies and individuals to self-determine how, when and at what price their data is used along the

value chain, thus enabling new intelligent services and innovative business processes. Companies can

share any data in any ecosystem, thus transforming the digital economy worldwide.

One key aspect of the IDS standards is the use of a data sovereignty framework, which ensures that data

is stored and processed in compliance with the laws and regulations of the country where the data

originates. This is achieved using data controllers, who are responsible for ensuring that data is processed

in accordance with local laws and regulations.

Another important aspect of the IDS standards is the use of data protection and privacy by design

principles. This means that privacy and security considerations are built into the data sharing process from

the outset, rather than being an afterthought. This is achieved using techniques such as data

anonymization and pseudonymization, as well as the use of secure communication protocols.

The IDS standards also provide guidelines for data interoperability, which is essential for effective data

sharing and collaboration. This includes the use of common data formats and protocols, as well as the

use of semantic data models to ensure that data can be easily understood and used by different

organizations. In addition, the IDS standards also provide guidelines for data governance, which is

essential for ensuring that data is used responsibly and ethically. This includes the use of data use

agreements and data access policies, as well as the use of data quality and data lineage techniques to

ensure that data is accurate and reliable.

In order to achieve the DT4GS goals, it is important to apply the IDS standards in a way that ensures

interoperability between partners and enables the exchange of information while maintaining data

sovereignty but still emphasizing the open nature of the project.

2.4.1 IDS in the maritime domain

The maritime domain is facing an increasing amount of data generation from different sources such as

ships, ports, coastal monitoring systems, among others. The data generated by these sources is valuable

for improving the efficiency and safety of maritime operations, but also for addressing environmental

and security challenges. However, the data is often siloed, inconsistent, and difficult to share and use.

The IDS framework can help to overcome these challenges by providing a secure and privacy-compliant

way of sharing and using maritime data. The IDS can be adapted to the maritime domain by defining

specific data models, data controllers and connectors that will enable the interoperability of different

data sources, services and applications. The IDS can provide a governance framework to ensure that the

data is used ethically and responsibly, and that the data sovereignty and privacy regulations are

respected.

3 International Data Spaces (fraunhofer.de)

https://www.dataspaces.fraunhofer.de/en/InternationalDataSpaces.html

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 17

One key aspect of the IDS adaptation to the maritime domain is the use of a data sovereignty framework,

which ensures that data is stored and processed in compliance with the laws and regulations of the

country where the data originates. This is essential for the maritime domain as it often involves data from

different countries and international waters. Another important aspect of the IDS adaptation to the

maritime domain is the use of data protection and privacy by design principles. This means that privacy

and security considerations are built into the data sharing process from the outset, rather than being an

afterthought. This is essential for the maritime domain as it often involves sensitive data such as personal

data and location data.

The IDS can also provide data interoperability, which is essential for effective data sharing and

collaboration in the maritime domain. This includes the use of common data formats and protocols, as

well as the use of semantic data models to ensure that data can be easily understood and used by

different organizations.

In addition, the IDS can provide guidelines for data governance, which is essential for ensuring that data

is used responsibly and ethically in the maritime domain. This includes the use of data use agreements

and data access policies, as well as the use of data quality and data lineage techniques to ensure that data

is accurate and reliable.

IDS connector

The IDS Connector is the central technical component for secure and trusted data exchange. The

connector sends your data directly to the recipient from your device or database in a trusted, certified

data space, so the original data provider always maintains control over the data and sets the conditions

for its use. The connector uses technology that puts your data inside a sort of virtual “container,” which

ensures that it’s used only as agreed upon per the terms set by the parties involved. Data exposed via

IDS Connector is published with data endpoints description to an IDS meta-data broker. This approach

allows data consumers to available data sources in terms of structure, quality, eventual obsolescence and

other various information.

Figure 4 clarifies the data exchange modalities between different data providers via the IDS Connector

application.

Figure 4 The IDS Connector concept4

4 Source: https://newsroom.eclipse.org/eclipse-newsletter/2021/october/eclipse-Dataspace-connector-trusted-data-

sharing-sovereignty

https://newsroom.eclipse.org/eclipse-newsletter/2021/october/eclipse-dataspace-connector-trusted-data-sharing-sovereignty
https://newsroom.eclipse.org/eclipse-newsletter/2021/october/eclipse-dataspace-connector-trusted-data-sharing-sovereignty

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 18

The IDS Connector Library consists of several different types of connectors, including:

1. Data connectors: These connectors provide access to data sources, such as databases and file

systems, and enable the retrieval, storage and transformation of data.

2. Service connectors: These connectors provide access to services, such as machine learning or

analytics services, and enable the execution of specific tasks on the data.

3. Communication connectors: These connectors provide secure communication channels between

different systems and services and enable the exchange of data and metadata.

4. Authentication and authorization connectors: These connectors provide authentication and

authorization mechanisms for accessing data and services.

Each connector in the IDS Connector Library has a well-defined interface and is designed to be reusable

and composable. This allows different connectors to be combined to create complex workflows for data

sharing and collaboration.

The IDS Connector Library is typically used by data controllers, who are responsible for ensuring that data

is processed and shared in compliance with local laws and regulations. The library provides a set of

functionalities to automate tasks such as data lineage, data quality, data use agreements and data access

policies, which are crucial for data governance.

Libraries for the implementation are available for the main programming languages, such as Java, Python,

C++ and C#.

2.5 The Information Architecture for DT4GS Dataspace

Figure 5, shows the conceptual information architecture of the Dataspace, inspired by the Internet of

Ships paradigm. It can be considered in terms of several layers. The bottom layer (Sensing) consists of

the IoT infrastructure onboard the ship that collects and transmits sensor data. The layer above (Inter-

network) is responsible for transmitting the data to both onboard and on shore systems using different

network and communication technologies. The Data fabric layer is responsible for organising, cataloguing

and interlinking the diverse data, and providing them with semantics (metadata) so that can be

discovered and utilised by the Services and applications layer. This layer is responsible for the different

analytics and other applications running onboard and onshore systems. These applications and services

are utilised by the DT4GS actors shown in Figure 6.

The below conceptual architecture will be further analysed and become concrete in the forthcoming

sections of this Deliverable.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 19

Sensing Layer

DT4GS actors

Data fabric layer

Services and application layer

Inter-Network Layer

Figure 5 Dataspace information architecture.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 20

3 Data Requirements for DT4GS

3.1 Data aspects to be considered

There are different types of data on the Internet of Things including RFID (Radio Frequency Identification)

data, environmental data, location data, multidimensional time series Sensor data and actuator status

and control order data. In addition, many of such data are unstructured or semi-structured and may lack

precise definitions of their schemata. Lack of strong frameworks for sensor and sensor data security also

create problems of lack of ownership and lineage knowledge. Moreover, the sheer volume of sensor data,

their stream-based arrival and need to fuse them and process them, often in real time create particular

requirements for a suitable data processing architecture.

3.2 Actors participating to the Dataspace

Similar to the IoT data diversity, there is a diversity of data users (consumers). Data producers and

consumers may be either on the shore or on the vessel. These are systems including digital twin (DT) type

of systems.

The Dataspace facilitates the different actors with the following:

• Acquire data required for the DT operation

• Contribute to the Dataspace with the available information produced by the DT

• Interact with the DT

• Configuring the DT

Figure 6 shows the two software major components and the various actors. These are categorized in

Table 3 with respect to the relationship with a DT4GS instance and their role.

The vessel system and the shore must be able to exchange data in a fast and reliable manner to enable

real time data processing, allowing for the DT configuration and the display of information both on board

and on shore.

Table 3 Summary of Dataspace internal and external actors’ roles

Category Actors Relationship

Office end users Office Engineer

Office Operator

Chartering Operator

Purchaser

Crewing Operator

Interact with the DT in a

monitoring or decision support

role.

Vessel end users Captain

Engineer

Desk Officer

Receive collected information

and evaluate operational advice

by the DT

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 21

IT personnel IT Engineers Keep the infrastructure

working, as well as all the

software applications.

Internal data sources Sensor and other onboard

systems

Ship maintenance, control/

supervisory and operation

systems

External data sources Organizations outside of the

Ship Owner’s.

Provide data to enrich all the

information collected on the

ships.

Authorities Organizations outside of the

Ship Owner’s organisation

such as port authorities

They need to receive data from

the ship for e.g., regulatory

compliance

Model providers Organizations outside of the

Ship Owner’s.

They can provide the Dataspace

with models that can potentially

be leveraged to improve the

simulation capabilities of the DT.

Original equipment manufacturer Organizations outside of the

Ship Owner’s.

They can provide with

components to be potentially

integrated into the DS to

implement particular

functionalities

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 22

Figure 6 DT4GS ecosystem actors

3.3 Data Requirements from Living Labs

The way values are acquired from on-board sensors varies depending on the ship on which the digital

twin system is installed. In this section, a brief review is provided of the on-board data acquisition system

as an interface to the DT4GS internal connectors. Given that circumstance, the internal connectors built

for the project have to be able to adapt to acquire and process data in different ship infrastructures.

The Living Labs partners and the respective ships are presented and described in deliverable D1.1 of this

project.

The DANAOS’ EXPRESS ATHENS and EURONAV Alex’s ship infrastructure expose an API that can be

queried to retrieve real time shipping data collected by the ship’s sensors. The internal connector will

gather data with a given, configurable, sampling, parse them accordingly in order to make them ready to

be sent to the central connector node in a predefined, structured node for the storing. The ship owners

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 23

will provide the project with the API documentation in order to allow the system to collect data given the

decided connector configuration.

BALEÀRIA’s Sicilia and Marie Curie ships present a similar configuration with a server that collects and

stores on board data and consequently can be queried via a REST API to collect information. Also, in this

case the Internal Connector will interface with the API, parse the gathered data and consequently post

them on a Kafka topic to send it to the Dataspace.

In the STARBULK’s ship case, Maharaj, there is not an infrastructure capable of exposing directly data via

an API. The IoT sensor infrastructure is connected to an alarm and monitoring system. In this particular

case, the Internal Connector have to interface itself with this particular system to be able to collect real

data sensor to provide to the Dataspace.

While this document is being written, contacts are ongoing between the DT4GS T2.2 participants and

STARBULK engineers to define how the system will be interfaced.

3.4 Overview of Data types in DT4GS and their processing requirements

Table 4 Data types and requirements in DT4GS

Data name Data origin Inbound or outbound

data

Data characteristics e.g

stream/discrete

structured/unstructured

etc

Ship location, motion

and heading sensors

IoT sensors Both Stream, structured

Weather information

data

Weather information

services

Inbound Discrete, structured

Hull condition

diagnostics

Hull IoT sensors Outbound Discrete/stream

Engine condition

diagnostics

Engine IoT sensors Both Discrete/stream

Fuel consumption Fuel monitoring

sensors

Outbound Discrete structured

Cargo condition

monitoring sensors

Sensors for monitoring

cargo condition e.g.,

temperature etc.

Outbound Discrete

structured/unstructured

Table 4 Data types and requirements in DT4GS summarises the data types that are considered in DT4GS

and provide requirements for the design of the Dataspace data processing capabilities. Such capabilities

in terms of data storage, processing, distribution, security etc are further described in the following

sections of this Deliverable.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 24

3.5 Overview of the System Architecture of DT4GS Dataspace

A Dataspace is a data infrastructure that organizes information into a meaningful and easily accessible

format. It aims to store, manage and retrieve data in an efficient and organized manner. The purpose of

a Dataspace is to provide a centralized location for data, enabling multiple users to access, manipulate

and analyse information quickly and easily, leading to better data-driven decision making and insights.

The data to be processed and digested in a Dataspace may be of different nature and origin, therefore

one of the key characteristics to be assured in a Dataspace is a common formatting of the data itself to

grant easy accessibility to it. It is essential that security is ensured in the passage of data between the

various components of the Dataspace. Finally, a fast retrieval of data has to be a focal goal in the design

and development of the Dataspace, in particular in the DT4GS use case, to allow for a real-time processing

and consequently enable applications like a real time optimization tool.

Figure 7 DT4GS Dataspace components and link with components of the DT4GS DT architecture

The logical components of the DT4GS Dataspace architecture are:

• Central Connector;

• Data storage;

• Internal Connectors;

• External Connectors;

• Dataspace Connectors.

Each of those entities as visualised in Figure 7 can be decomposed into smaller blocks that implement

particular functionalities of the Dataspace and that are developed leveraging the state-of-the-art

technologies.

Those entities, shown in Figure 7, will be briefly introduced in this chapter and then subsequently better

explained in the following sections of this document.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 25

The Central Connector

The Central Connector has the purpose to interconnect the components of the system while ensuring

security and transparency. Allows various components of the DS to exchange data and information via

message exchanges. The technology of choice for the implementation in the DT4GS DS is Apache Kafka

that implements a publish-subscribe (pub-sub) model. More on the topic will be described in section 5.2.

In Figure 7, the messaging system node is shown, responsible for actual message routing between

components, Data catalog and Lineage, platform monitoring, processing units and the task scheduler,

(analysed in Sections 5.5 and 5.6) that triggers the various applications to enable particular routines and

simulation execution within the DT. The Central Connector Node represents the core of the Dataspace,

allowing for data centralization.

Data storage

As already stated, the DT4GS ecosystem is composed of different kind of data to be shared and processed

between its internal software applications and components. Different data storages utilities are applied

in the DS. Data streams collected by on-board sensors are stored in a time-series data format utilising a

NoSQL database called InfluxDB (discussed in Section 4.2) by the node Data. A configuration database

(node Config) is required to store configurations data for all the software involved in the digital twin and

associated services.

The models built by the DT4GS partners, in particular in the scope of WP1, are stored in File System.

Different storing formats are in evaluation while completing the DS architecture definition. In particular,

the adoption of the Functional Mock-up Interface (FMI) is to be considered as the best solution, with it

being supported by 170+ tools and maintained as a Modelica Association Project5. FMI is an open standard

that defines a container and an interface to exchange dynamic simulation models using a combination of

XML files, binaries and C code, distributed as a ZIP file.

The node KG (further discussed in Section 4.1) represents the data fabric of the entire DT4GS Dataspace,

using a graph data structure that is used to represent knowledge in the form of nodes and edges.

In order to ensure better performance of the DT in data processing, a cache-like memory (node Cache)

will be set up that will contain at runtime the last data used, to allow quick access and reusability, some

reference data that are particularly useful and intensively used by all applications, and finally useful data

for the process.

Internal Connectors

The Internal connectors (analysed in Section 5.3) are responsible for the exchange of sensory and other

data from the Vessel System and the Shore System. Sensor data will be recovered from the on-board

systems available on the ship, partially processed and analysed and then exported towards the Central

Connector node for the actual storing of the information, to make them available and usable to the Digital

Twin applications. In line with previous statements, the technology chosen for information exchange will

be Apache Kafka (further analysed in Section 5.2), so as to ensure consistency and interoperability

between the Vessel System and the Shore System, hosting the central connector.

External Connectors

Not all the information required for the DT to operate is directly available from on-board and internal

data. Based on the Living Labs requirements, necessary connectors, External connectors, (analysed in

5 MA Projects — Modelica Association

https://modelica.org/projects

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 26

Section 5.4) are created to enable the digital twin systems to retrieve information from external sources,

such as weather-data APIs, fuel availability and prices data, information relative to other ships in

navigation, etc.

Dataspace Connectors

Given the niche aspect of digitalization in the maritime industry when viewed from a broader industrial

perspective, it may be a wise strategy to adapt solutions from broader domains to the maritime context

in order to reap benefits from adoption, support, and future developments. The IDS standards (discussed

in Section 2.4), applied in the maritime context can allow for a more structured data handling and sharing

between separate entities, part of different organizations. As showed in Figure 7, IDS connectors can

allow other users, external from the organization to interact and retrieve data from the Dataspace based

on rules defined in the connector itself. Models, Knowledge graph and other information can be

exchanged with other Dataspaces together with new potential use cases to be considered and managed

by the DT4GS DT to achieve the goals set by the partners.

3.6 DT4GS Dataspace

3.6.1 Data fabric

Because the DT4GS Dataspace is tasked to support a very broad type of ship data with diverse structure,

format, ownership, processing requirements and so on, it requires a dedicated infrastructure that can

make such data easily discoverable, accessible, integratable and usable. In data management literature

this infrastructure is called data fabric6. Using a data fabric, data from disparate sources can be found,

understood and integrated to support analytics applications faster and at a lower cost.

One technology that can realise data fabric is the Knowledge Graph. The next section discusses selecting

a suitable Knowledge Graph technology to implement a data fabric in Dataspaces.

3.6.2 Knowledge Graph

Given the different software applications, services and tools that cooperate to allow the DT4GS system

to effectively map the actual ship behaviour and support the operational utilization of the digital twin

itself, the Project proposed the use of Knowledge Graphs to support the data flow and the orchestration

of the computational steps required for a given operation.

Knowledge graphs (KG) are a powerful tool for representing and reasoning about large and complex sets

of data. From a general point of view, they are a type of graph data structure that is used to represent

knowledge in the form of nodes and edges. KG are becoming increasingly important in recent years as

the amount of data available on the internet has grown.

There are several key features of knowledge graphs, including:

• Representation of entities: KG represents entities in the form of nodes, which can be anything

from people, organizations, and locations to concepts and ideas.

• Representation of relationships: they represent relationships between entities in the form of

edges, which can be anything from "is-a" relationships to more complex relationships such as

"part-of" or "works-for".

6 Using Data Fabric Architecture to Modernize Data Integration (gartner.com)

https://www.gartner.com/smarterwithgartner/data-fabric-architecture-is-key-to-modernizing-data-management-and-integration

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 27

• Semantic representation: they use a consistent vocabulary and ontology to represent entities and

relationships, which allows for automated reasoning and inferencing.

• Scalability: KG can be scaled to handle large amounts of data and are able to handle millions of

nodes and edges.

In the scope of the DT4GS KG are utilized to describe a data elaboration pipeline, highlighting the inputs

data to gather from the data storage, the models and tools to utilize for data processing, and the actual

outputs to be produced and stored in the Dataspace itself. An example of this concept is presented in

Figure 8 below.

 Figure 8 Example of Knowledge Graph to describe the computational steps to obtain CO2e and FOC given the required models and

data

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 28

4 Evaluation of data processing infrastructures and selection

criteria

4.1 Knowledge Graph Selection

There are several software solutions that implement knowledge graphs, including:

Neo4j7: Neo4j is an open-source graph database that can be used to create and store knowledge graphs.

It supports Cypher, a graph-oriented query language that allows you to traverse and query your graph

data. Neo4j also provides a web-based user interface and a set of APIs for interacting with the graph data.

GraphDB8: GraphDB is a proprietary triplestore that allows you to store, manage and query RDF data. It

has aset of features such as reasoning, geospatial and temporal data handling, and text search. GraphDB

is often used in semantic web and linked data projects.

GraphQL9: GraphQL is a query language that allows you to define the structure of your data and the

operations that can be performed on it. It is often used to build APIs and can be used to create and store

knowledge graphs.

These solutions are in evaluation by the DT4GS partners to select the one that best fits the system needs.

4.2 IoT Database Selection

In order to properly handle IoT data generated by the different ship sensors, databases play a critical role.

As a consequence, the selection of the right database is crucial. Key factors for selecting a database for

storing an IoT applications10 include indexing, size, scaling, reliability when dealing with vast numbers of

data, user-friendly schemas, languages for querying, convergence and heterogeneity, aggregation of

time series, archiving, security and cost effectiveness.

The following is a list of candidate IoT databases:

CrateDB11 is a distributed SQL database management system. It is designed for high scalability since it is

open source and written in Java, and it includes components from Facebook Presto, Apache Lucene,

Elasticsearch, and Netty.

MongoDB12 is a document-oriented database software that is available as a free and open source cross-

platform framework. It is classified as a NoSQL database application. MongoDB makes use of JSON-style

documents with schemas.

RethinkDB13: RethinkDB is an open-source database, built-from-the-ground-up portable JSON database

for the real-time Network

7 https://neo4j.com
8 Ontotext GraphDB
9 GraphQL | A query language for your API
10 https://iot4beginners.com/top-5-databases-to-store-iot-data/)
11 CrateDB – Distributed SQL Database Enabling Data Insights at Scale
12 MongoDB: The Developer Data Platform | MongoDB
13 RethinkDB: the open-source database for the realtime web

https://www.ontotext.com/products/graphdb/
https://graphql.org/
https://iot4beginners.com/top-5-databases-to-store-iot-data/
https://crate.io/
https://www.mongodb.com/
https://rethinkdb.com/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 29

SQLite14: SQLite Database Engine is a process library that offers a transactional SQL database engine that

is serverless (standalone). Because of its portability and small footprint, it has had a huge impact on game

and mobile application growth.

IoTDB Apache15: IoTDB is an IoT native database with high performance for data management and

analysis, deployable on the edge and the cloud.

4.2.1 Time series databases

Time series databases (TSDBs) allow the storing of data over a period of time. Time series enables the

inserting or appending data in comparison to updating or deleting data. TSDBs can be used in IoT devices

and system software to obtain metrics for predictive analytical purposes. TSDB are used for storing

sensor logging data that can be used in analysis to aid in predictive maintenance. However, TSDBs can

suffer from data volume limitation, difficulty in optimizing read and write operations to prevent

overlapping, and difficulty in handling static data16.

Some well-known time series databases include:

• InfluxDB 17

• Graphite18

• TimescaleDB19

• Apache Druid20

• RRDTool21

4.2.2 Rationale for selecting Influx DB

The technology of choice for the storage of data driven application is InfluxDB. InfluxDB is a NoSQL

database optimized for the ingestion of time-series data like the one we will retrieve from ship IoT

sensors.

InfluxDB is a time series database built to handle high write and query loads. InfluxDB is a custom high-

performance datastore written specifically for time-stamped data, and especially helpful for use cases

such as DevOps monitoring, IoT monitoring, and real-time analytics. Data can be permanently conserved,

but the DBMS is configurable to potentially setup expiration data logics for part of the data stored. While

InfluxDB also offers a SQL-like query language for interacting with data, granting good performances on

data querying and easy composition interpretation of the requests.

We selected InfluxDB for storing sensor data in the Dataspace for the following reasons:

1) InfuxDB allows series to be indexed.

14 SQLite Home Page
15 https://iotdb.apache.org
16 Time Series Database (TSDB) (opengenus.org)
17 https://influxdata.com
18 https://graphiteapp.com
19 Time-series data simplified | Timescale
20 Druid | Database for modern analytics applications (apache.org)
21 RRDtool - About RRDtool (oetiker.ch)

https://www.sqlite.org/index.html
https://iotdb.apache.org/
https://iq.opengenus.org/time-series-database/#:~:text=There%20are%20various%20databases%20that%20help%20in%20the,Python%20and%20JavaScript%29%206%20RRDTool%20%28Written%20in%20C%29
https://www.timescale.com/
https://druid.apache.org/
https://oss.oetiker.ch/rrdtool/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 30

2) InfluxDB allows automated data down sampling and has a SQL-like query language.

3) InfluxDB has built-in linear interpolation for missing data.

4) InfluxDB allows for continuous queries in order to calculate aggregates.

4.2.3 InfuxDB Technology Stack

The whole InfluxDB tool suite is named TICK Stack. TICK stands for Telegraf, InfluxDB, Chronograf, and

Kapacitor, which are integrated in a cohesive architecture, or "stack." Together these technologies

provide a platform that can capture, monitor, store, and visualize all data in a time series, allowing for

informed business decisions in real-time.

Below are briefly presented the components of the TICK stack:

Telegraf

Telegraf is a plugin-driven server agent for collecting and reporting metrics. Telegraf plugins source a

variety of metrics directly from the systems it runs on, pulling metrics from third-party APIs or even to

listen for metrics via a StatsD and Kafka consumer service. It also has output plugins to send metrics to a

variety of other datastores, services, and message queues, including InfluxDB, Graphite, OpenTSDB,

Datadog, Librato, Kafka, MQTT, NSQ and many others.

InfluxDB

The TSDB itself.

Chronograf

Chronograf is the administrative user interface and visualization engine of the stack. It allows to setup

and maintain the monitoring and alerting for the infrastructure. It also includes templates and libraries

that allow the user to rapidly build dashboards with real-time visualizations of your data and to easily

create alerting and automation rules.

Kapacitor

Kapacitor is a native data processing engine. In DT4GS we can potentially leverage Kapacitor capabilities

on TS data elaboration to implement the logics and algorithms of the Dataspace. It can process both

stream and batch data from InfluxDB. Kapacitor lets the user plug in a custom logic or user-defined

functions to process alerts with dynamic thresholds, match metrics for patterns, compute statistical

anomalies, and perform specific actions based on these alerts, like dynamic load rebalancing. Kapacitor

integrates with HipChat, OpsGenie, Alerta, Sensu, PagerDuty, Slack and more.

InfluxDB natively supports Kafka as an intermediate buffer before TS data is persisted for processing,

analysis, and use in other applications.

Cache memory and Configuration data

The amount of data processed by the various tools that will cooperate to implement the Digital Twin

application can be pretty huge. Given the real time requirements of some computation at the base of the

system, fast access time to some data is required. One solution to this problem is to use a cache memory

system, which stores frequently accessed data in a fast and easily accessible location. This approach can

significantly improve the performance of a data space by reducing the number of requests to the primary

data store and consequently the amount of data that needs to be transferred over the network.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 31

4.2.4 Rationale for selecting Mongo DB

Apart from sensor data, a variety of other types of ship data needs to be handled by Dataspace, as

explained in previous sections. For this application a NoSQL database like MongoDB is the natural and

more suited choice. There are, in fact, various reasons to lean towards to a NoSQL database to store that

kind of data, such as more flexibility, scalability, better performances and even implementation cost

reduction. Therefore, MongoDB was selected for the following reasons:

• Flexibility: MongoDB is designed to handle dynamic, unstructured data and can easily

accommodate changes to the schema. Configuration data often requires the ability to add,

modify or remove fields quickly, making it a good fit.

• Scalability: MongoDB databases are horizontally scalable, allowing them to easily handle large

amounts of configuration data, which often need to be updated frequently.

• Performance: MongoDB is optimized for fast and efficient retrieval of data, making them well

suited for use cases that involve frequent reads and updates of configuration data.

• Cost: compared to traditional relational databases these solutions are usually less expensive.

MongoDB is document-oriented to allow for easy storage and retrieval of data, and it supports a wide

range of data types. It also has built-in support for sharding, which allows for horizontal scaling and

improved performance. MongoDB capacity to store some data directly in memory allows for the

implementation of high-performance applications that require low-latency access to data.

4.3 Messaging infrastructures selection criteria

4.3.1 Messaging frameworks

The following are some popular messaging frameworks for IoT22:

1) MQTT (Message Queue Telemetry Transport)

2) AMQP (Advanced Message Queue Protocol)

3) DDS (Data Distributed Service)

4) XMPP (Extensible Messaging and Presence Protocol)

5) CoAP (Constrained Application Protocol)

To select a message processing framework for the needs of the Dataspace use cases the following needs

to be considered23:

• Performance: The framework should be able to handle the required volume and rate of messages,

and it should have low overhead and latency.

• Reliability: The framework should support delivery guarantees and error handling mechanisms to

ensure that messages are delivered reliably.

• Security: The framework should support security features such as encryption and authentication

to protect against unauthorized access and tampering.

22 https://build5nines.com/top-iot-messaging-protocols/
23 https://build5nines.com/top-iot-messaging-protocols/

https://build5nines.com/top-iot-messaging-protocols/
https://build5nines.com/top-iot-messaging-protocols/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 32

• Compatibility: The framework should be compatible with the devices and infrastructure that are

being used in the system.

• Ease of implementation: The framework should be easy to implement and integrate with the rest

of the system.

• Scalable data movement and processing: the framework can handle backpressure and can

process increasing throughput

• Agile development and loose coupling: different sources and sinks should have their own

decoupled domains. Different teams can develop, maintain, and change integration to devices

and machines without being dependent on other sources or the sink systems that process and

analyze the data.

• Innovative development: new and different technologies and concepts can be used depending

on the flexibility and requirements of a specific use case.

But several challenges increase the complexity of IoT integration architectures:

• Complex infrastructure and operations that often cannot be changed.

• Integration with many different technologies like MQTT or OPC Unified Architecture (OPC UA)

while also adhering to legacy and proprietary standards

• Unstable communication due to unreliable IoT networks, resulting in high cost and investment in

the edge

4.3.2 Stream Processing architectures

A streaming architecture is a defined set of technologies that work together to handle stream processing,

i.e., series of data at the time the data is created. In many modern deployments, some streaming

architectures include workflows for both stream processing and batch processing

Two popular stream processing architectures are the Kappa and Lambda Architectures. The Kappa

Architecture is considered a simpler alternative to the Lambda architecture as it uses the same

technology stack to handle both real-time stream processing and batch processing. Both architectures

handle the storage of historical data to enable large-scale analytics. The main difference with the Kappa

Architecture is that all data is treated as a stream.

4.3.3 Kafka

The Kappa Architecture is typically built around Apache Kafka along with a high-speed stream processing

engine.

The reason for selecting Kafka for the DataSpace messaging24 needs is that traditional message brokers

like Java Messaging Service (JMS)25, Apache ActiveMQ26, RabbitMQ27, and others are not designed to

handle high volumes of messages and provide fault tolerance. Apache Kafka on the other hand, is

designed to handle large volumes of messages and provide fault tolerance. It can be used as the central

nervous system of a distributed architecture that delivers data to multiple systems. Apache Kafka is a

24 Why Kafka is the Future of Messaging | Engineering Education (EngEd) Program | Section
25 Getting Started with Java Message Service (JMS) (oracle.com)
26 ActiveMQ (apache.org)
27 Messaging that just works — RabbitMQ

https://www.section.io/engineering-education/why-kafka-is-the-future-of-messaging/
https://www.oracle.com/technical-resources/articles/java/intro-java-message-service.html
https://activemq.apache.org/
https://www.rabbitmq.com/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 33

distributed, partitioned, replicated commit log service. It helps you process a large amount of data

through the use of various Kafka consumers. Kafka is available as a standalone server that you can install

on your local machine and various other applications can consume it. The primary reason behind

developing Apache Kafka was to serve companies with fast and efficient data pipelines.

With a sufficiently fast stream processing engine, Kafka can be used for both batch and real time stream

processing.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 34

5 Detailed Architecture description

5.1 The Central Connector Module

The Central Connector has the purpose to interconnect the components of the system while ensuring

security and transparency. Allows various components of the Dataspace to exchange data and

information via message exchanges. The technology of choice for the implementation in the DT4GS DS is

Apache Kafka that implements a publish-subscribe (pub-sub) model, as explained in the previous section.

As already stated, the DT4GS ecosystem is comprised of different kind of data to be shared and processed

between its internal software applications and components. Different data storages utilities are applied

in the Dataspace. In particular, data streams collected by on-board sensors are stored in a time-series data

format utilising the NoSQL database InfluxDB (reviewed in section 4). A configuration database is

required to store configurations data for all the software involved in the digital twin and associated

services.

In order to ensure better performance in data processing, a cache-like memory will be set up that will

contain at runtime the last data used, to allow quick access and reusability, some reference data that are

particularly useful and intensively used by all applications, and finally useful data for the process.

The purpose of the Central Connector Module is to interconnect the components of the Dataspace while

ensuring security and transparency.

In Figure 9 is shown the architectural diagram of the DT4GS infrastructure. The items in blue are the

components of the central connector module. A “Message Broker” receives data and requests and

properly routes them the intended destinations. The “platform monitoring” is a UI to visualize system

performance metrics and provide interface for the configuration of the remaining components. The

“Data Catalogue/Lineage” component provides a detailed inventory of all data assets and their

destination, utilization and transformation over their lifetime.

In the following paragraphs are presented the following:

• An overview of the messaging system,

• The Data Catalog and Lineage description,

• A preview of the capabilities and graphic output of the Platform Monitoring Interface,

• An overview of the possible security implications and of the evaluated approaches,

• The chosen technology for the deployment of all the Dataspace components.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 35

Figure 9 Architectural diagram of the DT4GS infrastructure with highlighted the components of the central connector module.

5.2 The Messaging System

As illustrated in Figure 9, data from the internal and external connectors, are ingested into the platform

using a distributed event streaming mechanism. As explained in Section 4.3 the chosen technology is

Apache Kafka (Kafka), a well-established open-source event streaming platform that is often preferred

for applications with real time data.

The Kafka cluster is administered by Zookeeper service (discussed in the next section); this service keeps

track of the cluster’s metadata, such as the nodes, topics, partitions and so on. These will now be

explained in more detail.

5.2.1 The Kafka Cluster

A Kafka cluster is a group of Kafka nodes that work together to handle the incoming data streams. In a

Kafka cluster, there are typically multiple broker servers. Each broker is responsible for managing a

portion of the data streams, called a partition. Each partition is made up of a sequence of messages, called

a log. Producers write data to the cluster by sending messages to a specific topic, and consumers read

from the cluster by subscribing to one or more topics.

One key feature of Kafka is its ability to handle high levels of data ingestion and processing. This is

achieved through horizontal scalability, where new brokers can be added to the cluster as needed to

handle increased traffic. Additionally, Kafka uses a technique called replication to ensure that data is not

lost in the event of a broker failure. Each partition is replicated across multiple brokers, so if one broker

goes down, the others can continue to serve the data.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 36

Another important aspect of Kafka is its support for real-time data processing. This is achieved through

the use of a commit log, where each message is written to disk as soon as it is received. Data Consumer

services can then read from the log and process the data in real-time. Additionally, Kafka provides support

for complex data pipelines through its support for stream processing, where data can be transformed

and processed as it is ingested.

A vital component of a Kafka cluster is a distributed coordination service called ZooKeeper. ZooKeeper is

a centralized service that is responsible for maintaining configuration information and providing

distributed synchronization. In a Kafka cluster, ZooKeeper is used to manage the configuration of the

brokers, track the location of partitions, and maintain a record of the overall health of the system. When

a new broker is added to the cluster, it registers with ZooKeeper and receives its configuration

information. Additionally, if a broker's configuration is changed, the change is propagated to ZooKeeper,

and all other brokers in the cluster are notified of the change. Each partition in a Kafka cluster is replicated

across multiple brokers, and ZooKeeper keeps track of which broker is the leader for each partition. This

information is used by the producers and consumers to determine where to send and receive data. In the

event of a broker failure, ZooKeeper will also coordinate the re-election of a new leader for the affected

partitions.

Finally, ZooKeeper also plays a critical role in maintaining the overall health of the system. It stores a

record of the current state of the cluster, including the status of each broker and partition. This

information is used by the clients to determine the health of the system and route their requests

accordingly.

In the DT4GS implementation, the central node, composed of the broker servers is in charge of granting

the distribution and persistent storing of record and messages.

Although only three components of the Dataspace are highlighted in blue in Figure 9 (as nodes fully

dedicated to the implementation of the Central Connector Module), all components of the DS will be

implemented as Kafka nodes, be they pure and simple consumers, or producers of data, as indicated by

the arrows in the figure. This architecture allows for fast data retrieval times for all the DS-related

applications that make up the DT4GS system environment. To achieve this communication capabilities

the components will be empowered via Kafka Connect. To better explain this concept, we can analyze

how the time series sensor data will be stored in the Dataspace once collected from the actual ship IoT

infrastructure. The ship, as a producer, will publish on a dedicated topic, routinely given the chosen

sampling interval, sensor data. The messages will be stored by the Central Connector node in order to

make them available to the subscribers of the topic. Once triggered, or routinely, the InfluxDB instance

will leverage the available dedicated Kafka Connect API to read from the topic and acquire the time series

for processing and storing.

5.3 Internal Connectors Nodes

The Internal connectors are responsible for the exchange of sensory and other data from the Vessel

System and the Shore System. Sensor data will be recovered from the on-board systems available on the

ship, partially processed and analysed and then exported towards the Central Connector node for the

actual storing of the information, to make them available and usable to the Digital Twin applications. In

line with previous statements, the technology chosen for information exchange will be Apache Kafka, so

as to ensure consistency and interoperability between the Vessel System and the Shore System, hosting

the central connector.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 37

5.4 External Connectors Nodes

Not all the information required for the Digital Twin to operate is directly available from on-board and

internal data. Based on the Living Labs requirements, necessary connectors are created to enable the

digital twin systems to retrieve information from external sources, such as weather-data APIs,

5.4.1 Dataspace Connectors Nodes

The Dataspace Connector is an IDS connector that is currently being maintained by Sovity28. The

connector was originally developed at the Fraunhofer ISST. With the help of the Dataspace Connector,

existing software can easily be extended by IDS connector functionalities in order to integrate them into

an IDS data ecosystem. Furthermore, it is possible to use the Dataspace Connector as a basis for the

development of own software that is to be connected to an IDS data ecosystem. The Dataspace

Connector uses the recent IDS Information Model version and the IDS Messaging Services for message

handling with other IDS components. For managing datasets by means of their metadata as IDS

resources, the Dataspace Connector provides a REST API. After an initial registration, IDS resources are

persisted to an internal or external database of the connector. External data sources can be connected

via REST endpoints, allowing the Dataspace Connector to act as an intermediary between the IDS data

ecosystem and the actual data source.

5.5 Data Catalog and Lineage

The other modules of the Dataspace, such as the storage layer, the processing units, the model execution

engine and the external connectors, communicate with each other through Kafka. A benefit from

applying this topology is that it is possible to monitor and record the consumption point of produced data

on Kafka. It is also possible to restrict or allow the distribution of specific information according to rules.

The operation is facilitated by the existence of a central data catalog, listing the data sources along with

their metadata.

Data catalog and lineage are important concepts in managing and understanding large Dataspaces. A

data catalog is a system that keeps track of all the data assets within a Dataspace, including their location,

format, and metadata. This allows users to easily discover, understand, and use the data within the

Dataspace. Data lineage, on the other hand, refers to the history of a particular data asset, including

where it came from, how it was transformed, and where it is used. This information is crucial for

understanding the provenance and trustworthiness of a particular piece of data, as well as for identifying

and troubleshooting issues that may arise.

With a comprehensive data catalog, users can easily find and access the data they need, while data lineage

allows them to understand how that data was created and how it has been used. Together, these two

concepts help to ensure that data is accurate, relevant, and trustworthy.

28 https://sovity.de

https://sovity.de/
https://sovity.de/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 38

Various technologies are available for the implementation. Some popular options include Apache Atlas29,

Alation30, Collibra31, and Informatica MDM32. These tools provide a variety of features, such as data

discovery, data lineage visualization, and metadata management, that can help organizations effectively

manage and understand their Dataspaces.

For these purposes it is examined the utilization of Apache Atlas as the DT4GS data governance tool.

Apache Atlas provides open metadata management and governance capabilities for systems to build a

catalog of their data assets, classify and govern these assets and provide collaboration capabilities around

these data assets for data scientists, analysts and the data governance team.

The metadata repository is built on top of a NoSQL database, such as Apache HBase33 or Apache

Cassandra34, which allows for scalability and high performance.

Atlas also includes a set of RESTful APIs that can be used to access and manage the metadata stored in

the repository. These APIs can be used to create, read, update, and delete metadata, as well as to perform

advanced searches and queries on the metadata itself.

In addition to the core metadata repository, Apache Atlas also includes a number of other components

that provide additional functionality. For example, it includes a data discovery and lineage component,

which allows users to track the lineage of data assets through various stages of the data pipeline. This

allows organizations to understand how data is used and transformed in their systems, and to identify

potential issues or errors.

Apache Atlas also provides a UI that allows user to easily navigate and interact with the metadata in the

repository. The UI allows users to view metadata, perform searches, and create and manage policies,

among other things.

5.6 The Platform Monitoring Interface

The data ingestion to the Kafka topics will be visualized with a platform (e.g., Grafana) so that the data

rate, volumetrics and availability can be precisely defined and monitored. Moreover, the incoming real-

world data can be used in conjunction with historical data for the simulations but also as a validation

measure on the output of a simulation, provided that the models allow for such input. Furthermore,

specific topics can pass information to the dashboard together with the scheduler API so that the user is

updated on the status of the simulations that are being executed. In addition, information regarding the

simulation execution history and in cases output data will be stored in Kafka topics. For example, it is

possible to create a line chart that shows the number of messages per second that are being processed

by a Kafka topic, or a bar chart that shows the number of messages per topic over time. The user can also

create tables that show the number of messages per topic, partition, or consumer group.

Finally, the machine's resources along with metrics from the Kafka subsystem and the storage

infrastructure are monitored through Prometheus exporters. The collected data can then be visualized

with dedicated dashboards (Grafana, Prometheus) in a variety of different graphs and with alerting

functionality built in.

29 https://atlas.apache.org
30 Learn About Alation - The Leader in Data Intelligence | Alation
31 Collibra: Data Catalog, Data Governance & Data Quality | Collibra
32 Master Data Management (MDM) Solutions and Tools | Informatica UK
33 https://hbase.apache.org/
34 https://cassandra.apache.org/

https://atlas.apache.org/
https://www.alation.com/about-alation/
https://www.collibra.com/us/en?source=mkto-fallback-page
https://www.informatica.com/gb/products/master-data-management.html
https://hbase.apache.org/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 39

Figure 10 Example of Grafana Dashboard to monitor a Kubernetes cluster

The dashboard, shown as an example in Figure 10, is customizable so it can be leveraged to create a UI to

integrate in the DT4GS Dataspace as a tool to allow the user to keep control of every meaningful aspect

to track in the DT4GS ecosystem.

5.7 Security Considerations

5.7.1 Device authentication and encryption

In view of the forthcoming regulation concerning ships’ emissions, the application of a blockchain

technology can provide the means for an autonomous, reliable, and trustful verification system to report

environmental indexes to the authorities. However, the implementation of such a system possibly

requires a decentralized topology, i.e. positioning of the blockchain intelligence closed to the data source,

possibly on the internal connector instead of the central connector (Figure 11). In this case the central

connector just passes through the communication.

The solution, defined in GA and currently being studied to evaluate its application based on the inherent

deployment needs of the DT4GS infrastructure, is the integration of CHARIoT's blockchain-based PKI for

sensor/gateway authentication and blockchain-assisted encryption of IoT endpoints.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 40

Figure 11 Example of sensor authentication and data exchange architecture with CHARIOT35

Below are listed some of the CHARIoT blockchain-related functionalities available36:

• End-to-end network solution with advanced capabilities for devices (sensors, gateways, etc.)

authentication (via keys’ embedding) combined with blockchain and encryption technologies.

• Combined authentication solution of blockchain with PKI (Public Key Infrastructure)

technologies in the actual network devices (sensors and gateways).

• Blockchain-aided encryption between all IoT network endpoints (sensor/gateway/FOG).

• Mobile application for sensor provisioning in the IoT network utilizing the four-eye principle.

• Blockchain-based state management for sensors (decommissioned, faulty, compromised etc.).

• CHARIOT sensors (WiFi & Bluetooth) with high processing capabilities (supporting encryption,

blockchain etc.)

Given the heterogeneous IoT infrastructure already in place on the ships involved in the DT4GS Living

Labs (discussed in Section 3.3), applicability of the CHARIOT’s solution is under investigation, therefore

a final implementation, at the time that the present report is compiled, is not yet conceived.

From the perspective of the central connector, it is required to ensure authentication of the connected

subsystems, especially the internal and external connectors, in order to avoid system manipulation by

providing artificial inputs.

Authentication can also secure system from erroneous inputs that may result to exhaustion of the

available resources (similar to DDOS symptoms).

Apart from protecting system from artificial or false inputs, care is taken to secure the data

communication from unauthorized access. The means to succeed this task is to encrypt the

communication.

35 https://www.chariotproject.eu
36https://www.chariotproject.eu/wp-content/uploads/2020/11/WS3_Blockchain-as-an-enabler-for-IoT-Data-Security-

Safety-and-Privacy.pdf

https://www.chariotproject.eu/
https://www.chariotproject.eu/wp-content/uploads/2020/11/WS3_Blockchain-as-an-enabler-for-IoT-Data-Security-Safety-and-Privacy.pdf
https://www.chariotproject.eu/wp-content/uploads/2020/11/WS3_Blockchain-as-an-enabler-for-IoT-Data-Security-Safety-and-Privacy.pdf

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 41

Both encryption and authentication are foreseen for any communication between the different building

blocks of the system.

The current version of Kafka includes the following featuresi that, that can be used either separately or

together, increasing security in a Kafka cluster:

1. Authentication of connections to brokers from clients (producers and consumers), other brokers

and tools, using either SSL or SASL.

2. Authentication of connections from brokers to ZooKeeper

3. Encryption of data transferred between brokers and clients, between brokers, or between

brokers and tools using SSL

4. Authorization of read / write operations by clients

5. Authorization is pluggable and integration with external authorization services is supported

Application of these security measures is optional - non-secured clusters are supported, as well as a mix

of authenticated, unauthenticated, encrypted and non-encrypted clients.

As per the actual direction evaluated by the DT4GS partners, as already stated in this section, internal and

external connector must be implemented such as to guarantee for a secure authentication while

exchanging data towards the central connector node. Given the data exchanged between ship and shore

might be sensitive, encryption capabilities will be granted to all the Kafka nodes compromising the DS.

These security features will be implemented, as a first iteration, using the Kafka features described above.

5.7.2 Sensor and Gateway Authentication

In view of the forthcoming regulation concerning ships’ emissions, the application of a blockchain

technology can provide the means for an autonomous, reliable, and trustful verification system to report

environmental indexes to the authorities. However, the implementation of such a system possibly

requires a decentralized topology, i.e. positioning of the blockchain intelligence closed to the data source,

possibly on the internal connector instead of the central connector. In this case the central connector just

passes through the communication. At the time that the present report is compiled, the matter is under

investigation, but a solution is not yet conceived.

5.8 Deployment

A goal of the project is to allow end users to easily implement and deploy their own version of the DT4GS

infrastructure. The technology evaluated as the best for our framework is Kubernetes

(htps://Kubernetes.io).

Kubernetes is an open-source container orchestration system that automates the deployment, scaling,

and management of containerized applications. It is widely used in organizations of all sizes, across

various industries, to manage their containerized workloads.

One of the main benefits of Kubernetes is its ability to automate and script the deployment of

applications, which can greatly reduce the time and effort required to deploy and manage applications.

This can be especially beneficial for organizations that have complex and dynamic workloads, or that need

to deploy and manage applications across multiple environments. These scripts are managed by a version

control system and are part of a Continuous Integration and Continuous Deployment pipeline (CI/CD).

This pipeline will monitor the code repositories of the various components and any changes will trigger

re-testing and operator instructed redeployment of the platform.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 42

Grafana dashboards provide also monitoring for the Kubernetes infrastructure.

To explain the choice of Kubernetes as a technology for deployment, the software and its operation are

briefly presented below.

A Kubernetes deployment typically includes several components and tools, including:

• Kubernetes cluster: A set of machines that run the Kubernetes control plane and worker nodes.

The control plane manages the overall state of the cluster, while the worker nodes run the

containerized applications.

• Container runtime: The software that is used to run the containerized applications. This can be

Docker, containerd, or another container runtime.

• Kubernetes API: The API that is used to interact with the Kubernetes cluster. This is typically

accessed via the Kubernetes command-line interface (kubectl) or a Kubernetes client library.

• Kubernetes manifests: YAML files that define the desired state of the deployment, including the

containerized applications and the resources that they require.

• kubectl: The Kubernetes command-line interface that is used to interact with the Kubernetes API.

It can be used to create, update, and delete resources, as well as to view the current state of the

cluster.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 43

5.9 Data storage

As introduced in section Data aspects to be considered, our Dataspace processes heterogeneous types

of data and thus it is required for it to be able to store all these information in an effective format to allow

fast data retrieving and processing.

Figure 12 Architectural diagram of the DT4GS infrastructure with highlighted the components of the data storage.

The chosen solutions for data storing and processing are presented in this document in the chapter

Evaluation of data processing infrastructures and selection criteria.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 44

5.10 Internal Connectors

Figure 13 Architectural diagram of the DT4GS infrastructure with highlighted the components of the Internal Connectors.

Given the actual sensor infrastructure already installed on board of the LL ships, the Internal connectors,

presented, will be customized in order to ensure the digital twin has the capabilities to interface with the

ship's information system, if present, or with the signal management system from the sensors behind the

on-board real-time monitoring system as in Starbulk's ship case. This approach will allow the Digital Twin

to include the whole hardware sensor infrastructure of the ships into the Dataspace making it a common

IoT infrastructure capable of connecting devices on board and ashore, enabling users involved in the

digital twin to monitor in real time the status of the ship.

The Internal connectors, shown in Figure 13 Architectural diagram of the DT4GS infrastructure with

highlighted the components of the Internal Connectors.are the components of the DT4GS infrastructure

located on the ship and dedicated to the gathering of the IoT sensor data and consequently to the

transmission of data from the ship itself to the ship-owner’s headquarters, where the central connector

node and the Dataspace structure are located. Consequently, the minimum required capabilities for this

component are to be able to adapt to the ship infrastructure and collect data from its informative system

or IoT structure, organize them in a structured way and consequently provide them to the DT4GS

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 45

Dataspace for storage.For an easy, automated deployment of the solution the Internal Connector will be

provided as a Docker Container37.

5.11 Internal Connectors integration with the Central Connector Module

As described in this document, all the main components of the DT4GS system will be enabled as Apache

Kafka consumers/producers to allow the messaging system to connect. The internal connectors are no

exception to that rule.

5.12 Blockchain Enabled Connectivity

Blockchain technology has recently gained a lot of attention as a way to provide secure, decentralized

solutions for a variety of applications. One area where blockchain technology has the potential to make

a significant impact is in the field of IoT connectivity, granting the security and integrity of the data being

transmitted. Blockchain technology provides a solution for this challenge by allowing for the creation of

decentralized networks where each node has a copy of the blockchain, providing a tamper-proof record

of all transactions. By incorporating blockchain technology into an Apache Kafka-based IoT connectivity

solution, it is possible to ensure that the data being transmitted is secure and cannot be tampered with.

One way to implement this functionality is by using a blockchain-based distributed ledger to store the

metadata of the messages transmitted in the Kafka cluster. This metadata would include information

such as the timestamp, the sender, and the recipient of the message. By storing this information on a

blockchain, the system can ensure that it is tamper-proof and can be used to verify the authenticity of the

data being transmitted. Another approach is to use smart contract to validate the authenticity of the

devices that are sending data to the Kafka cluster.

As already stated in section 5.7.1 this approach requires a decentralized topology, i.e., positioning of the

blockchain intelligence closed to the data source, possibly on the internal connector instead of the central

connector, and is still investigated as by the DT4GS partners as a possible implementation choice.

5.13 Data Streaming Modalities

The Internal Connector in DT4GS are implemented as Kafka producers. The Kafka producer is

conceptually much simpler than the consumer, as it does not need group coordination. A producer

partitioner maps each message to a topic partition and then sends a production request to the leader of

that partition. The partitioners supplied with Kafka ensure that all messages with the same non-empty

key are sent to the same partition.

5.14 On board data cleaning

In order to clean up the acquired data to be transmitted to the Central Connector Node, it could be

evaluated to provide some data pre-processing and cleaning capabilities to the Internal Connectors. At

this stage of the project, this solution is in getting discussed by the DT4GS partners. To achieve this result

a local instance of InfluxDB must be instantiated in the Internal Connector Node.

The data will be saved in the local Influxdb instance, and some data cleaning routines will be performed

on them, including outlier detection, as descripted in Section 6, and potentially data validation with a

37 https://docker.com

https://docker.com/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 46

fixed threshold of acceptability of the sensor value. This approach could eventually allow to lighten the

burden of information exchanged between ship and shore by ensuring that only useful data is sent on

the relevant topic. There are different ways to stream data from InfluxDB to an Apache Kafka topic, but

one possible approach is to use a Kafka Connect sink connector for InfluxDB. The data stream can be

triggered using the Kafka Connect command-line tool but can also be initiated and managed

automatically by a service.

5.15 External Connectors

As already stated in section 1, the actual implementation and operation of a ship Digital Twin requires

additional data that are not directly collectable from the ship system via Internal Connectors. Data like

weather data, port traffic data, fuel availability/prices, etc might be accessible via other data sources and

accessible in alternative ways like via APIs. For this reason, the DS needs to be augmented with external

connectors, able to digest those external data and consequently enrich them with the required metadata

before making them available to the Digital Twin ecosystem through the Central Connector Node. An

interface with HQ ERP, PMS and other system might be needed too.

Figure 14 Architectural diagram of the DT4GS infrastructure with highlighted the components of the external connector modules.

The data linking between the external sources and the DT4GS DS is implemented via Apache Kafka as per

the other data sources, to enable compatibility also in this context. As per the Internal Connectors the

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 47

applications are built leveraging Docker creating standalone containers to allow DT4GS users to easily

deploy the application.

In Figure 14 Architectural diagram of the DT4GS infrastructure with highlighted the components of the

external connector modules.are highlighted the components of the Dataspace to be considered as

External Connectors. The first block named External Connector represents generally every API and

application built to allow retrieving data from external sources out of the DS itself. The other highlighted

block, Dataspace Connectors, represents the actual implementation of the connectors between different

Dataspaces as per the IDS Dataspace Standards.

5.16 External data

In this sub-chapter are presented some of the external data that might be useful to be leveraged in the

DT4GS project. The main and more interesting external information could be classified as:

• Weather data (for performance assessment).

• Weather data (for routing).

• Fuel availability/price.

• Headquarters systems such as ERP, PMS, etc.

In particular, as a matter of example, we cite the most important environmental conditions that could

affect the choice of the optimal ship’s route. This data has been found to some of the most important

weather sources, such as World Weather Online38, Copernicus39, Meteoblue40 and NOAA41. It is important

to mention that in some platforms, this data is explicitly available, whereas in others, subscription may

be needed. At the time that the present report is compiled, the external sources are evaluated to assess

which ones could represent an added value for the project, enabling the models developed within the

project to more faithfully simulate the real behaviour of the ship. The choice will be made in discussion

with the consortium partners. In the following part of this document, the weather data is organized per

source and some tables are provided to summarize the available information.

5.16.1 World Weather Online

The Premium Historical Marine Weather REST API method allows you to access marine data for a given

longitude and latitude, as well as tidal data. The Historical Marine Weather API returns weather elements

such as temperature, precipitation (rainfall), weather description, weather icon, wind speed, Tidal data,

significant wave height, swell height, swell direction and swell period. Provides up to 7 days of forecast.

The data provided from the World Weather Online, are presented in the Table 5 below:

Table 5 World Weather Online API available data

Weather element

1 Date

2 Maximum Temperature of the day in degree Celcius

38 World Weather Forecasts | World Weather Online
39 Homepage | Copernicus
40 https://www.meteoblue.com/
41 Homepage | National Oceanic and Atmospheric Administration (noaa.gov)

https://www.worldweatheronline.com/country.aspx
https://www.copernicus.eu/en
https://www.meteoblue.com/
https://www.noaa.gov/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 48

3 Maximum Temperature of the day in degree Fahrenheit

4 Minimum Temperature of the day in degree Celcius

5 Minimum Temperature of the day in degree Fahrenheit

Astronomy element

1 Local sunrise time

2 Local sunset time

3 Local moonrise time

4 Local moonset time

5 Moon phase

6 Moon illumination

Hourly element

1 Local forecast time

2 Temperature in degree Celcius

3 Temperature in degree Fahrenheit

4 Wind speed in miles per hour

5 Wind speed in kilometres per hour

6 Wind direction in degrees

7 Wind direction in 16-point compass

8 Weather condition code

9 Weather condition description

10 URL to weather icon

11 Precipitation in millimetres

12 Humidity in percentage

13 Visibility in kilometres

14 Atmospheric pressure in millibars

15 Cloud cover in percentage

16 Significant wave height in metres

17 Swell wave height in metres

18 Swell wave height in feet

19 Swell direction in degree

20 Swell direction in 16-point compass

21 Swell period in seconds

22 Water temperature in Celcius

23 Water temperature in Fahrenheit

24 UV index

Tides element

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 49

1 Local tide time

2 Tide height in meter

3 Type of tide, i.e, high, low or normal

5.16.2 Meteoblue Packages API

Meteoblue offers numerous weather variables which are grouped into history and forecast packages.

There are different packages for specific use cases like agriculture, renewable energy and many others.

The data packages are available for different historical and forecasting time-ranges in the CSV and JSON

formats. The data provided from the Meteoblue Packages API, are presented in the Table 6 below:

Table 6 Meteoblue Packages API available data

Precipitation

1 Accumulated Precipitation

2 Daily Precipitation

3 Hourly Precipitation

4 Accumulated Snowfall

5 Daily Snowfall

6 Hourly Snowfall

Sea

1 Wave Height (significant, swell, wind)

2 Wave Period (swell, wind)

3 Wave peak period (swell, wind)

4 Ocean currents

5 Sea water salinity

6 Sea ice cover

7 Water surface temperature

5.16.3 National Oceanic and Atmospheric Administration API

NCDC's Climate Data Online (CDO) offers web services that provide access to current data. This API is for

developers looking to create their own scripts or programs that use the CDO database of weather and

climate data. An access token is required to use the API, and each token will be limited to five requests

per second and 10,000 requests per day. The data provided from the CDO database, are presented in the

Table 7 below:

Table 7 CDO database available data

Real time data

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 50

1 Water Level

2 Air temperature

3 Water Temperature

4 Barometric pressure

5 Winds

6 Relative humidity

7 Visibility

8 Next tide (when and if high or low) ~ every 6h

Currents

1 Currents velocity (some meters below the surface)

Wave buoys (ports)

1 Significant wave height

2 Peak direction

3 Wave period

4 Water temperature

5.17 External Connectors integration with the Central Connector Module

As stated in the previous paragraph, external information is usually available via API calls. Given that

assumption, it is possible to identify a lot of implementation parallels between the Internal and the

External connectors.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 51

6 Analytics Applications

The sensor infrastructure on a ship includes a variety of sensors that are used to monitor various systems

and conditions on board the ship. These sensors include engine sensors, which monitor the performance,

temperature, pressure, and vibration of the ship's engines, navigation sensors, such as GPS and

gyroscopes, which track the ship's position, heading, and speed, and environmental sensors, such as

temperature, humidity, and air quality sensors, which monitor the conditions on board. Additionally,

there are cargo sensors that monitor the weight, temperature, and condition of the ship's cargo, weather

sensors, such as wind, rain, and wave sensors, that gather data on the ship's surroundings, and ballast

and bilge sensors that detect any changes in the ship's water levels to ensure stability. Other sensors,

such as fire and gas detectors, are included for safety purposes, and deck and hull stress sensors monitor

the ship's structure and detect any signs of stress or damage. These sensors work together to gather

data, which is then transmitted to edge devices or directly to the cloud for analysis and action.

The information collected on the different ships made available by the LL partners to be used as a test

bed presents many common data but at the same time there are differences to be managed. In the

context of DT4GS, the data of interest are vessel data that arrive in the form of sensor observations.

These observations are captured by onboard sensor technologies and may measure quantities such as

velocity, fuel consumption, acceleration, engine temperature, etc. Since these observations are ordered

based on time and arrive at fixed time intervals t, a straightforward way to model them is through time

series data. Since multiple sensor updates are received at each timestamp, the produced time series are

characterized as multivariate.

A first approach to the whole data collected onboard must be to select from the available pool of

monitored signals those useful for processing within the Digital Twin. One of the goals of the project at

this stage is to provide a common interface between ship and shore, both from the communication

standpoint but also relatively to the actual sensors’ information collected for the DT’s operational needs.

While many common aspects, as expected, can be found in the IoT structure for all the ships in the LL,

there are differences in the way data is collected and consequently in the way our DT can interface with

them for data retrieving.

The table reported in in annex 1 of the DT4GS deliverable D1.1 produced in the scope of the DT4GS project,

which at the time of writing this document has already been published by the project consortium,

presents the information on available sensors gathered by the partners in the work of task 1.1.

While approaching the collected data, it is also expected that there will be incorrect, corrupted, or

incomplete data points within the captured observations; hence, a data cleaning process is typically

necessary prior to any analysis. Standard practices at the minimum perform the detection and removal of

erroneous values, as well as missing values imputation. Furthermore, depending on the type of analysis

we wish to perform, there may be further preprocessing steps required, such as normalization or

dimensionality reduction. These steps could be partially performed on board before sending the data to

shore, or handled completely in the land offices, easing the hardware requirements of the machines

installed on board. This aspect is one of the topics being evaluated with the Living Labs partners.

Once the data preprocessing procedure is completed, the data should be in a form appropriate to be used

as input to various mathematical models (e.g., machine learning models) that will detect potential

irregularities, extract valuable patterns or predict future behaviours. These computational steps must be

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 52

processed before time series data are made available for the simulation tasks underlying the operation

of the DT4GS digital twin.

The IoT Infrastructure is not compromised only by the actual sensors installed on-board but also by the

edge devices, such as gateway computers, a communication system and user interfaces, such as

dashboards, that visualize the data and allow for control of the ship systems.

Event streaming platforms play a central role in ingesting, storing, and processing real-time data (e.g.

sensor observations) in a scalable and resilient manner. In our case, an event (also record or message) is

a notification that "something happened" in the vessel, i.e., an update on the state of the ship. An event

stream is a continuous unbounded series of such events. The start of the stream may have occurred

before we started processing the stream. The end of the stream is at some unknown point in the future,

i.e when the vessel reaches a port. Each event in a stream carries a timestamp that denotes the point

when the event occurred. Events are ordered based on this timestamp. In general, the definition of time

series data aligns with that of event streams.

Typically, these systems function according to the popular producer-consumer paradigm. Simply put, in

the core of this paradigm there are 2 (computer) processes, one that sends events (or messages), also

called the producer, and one that receives events (or messages), also called the consumer.

The architecture just described fits perfectly in the Apache Kafka producer-consumer communication

paradigm, as already described in section 4.3 validating the choice of this technology in the scope of this

project.

6.1 Localized Data Capture and processing

Scalability and the capacity to quickly consume data are the main database requirements for IoT apps. As

previously stated, NoSQL systems are ideal for IoT since they are designed with significant horizontal

scalability. Some other popular characteristic of NoSQL databases is the effective use of data storage in

memory, which would be highly useful for writing throughput and latency. RDBMS systems appear to be

incomplete because they were not intended to process the quantity of data, or the rate produced by the

data.

For the data ingestion in the form of time series data the choice for the DT4GS DB implementation is

InfluxDB, presented in Section 4.2.

6.2 Time series-processing and Analysis on Sensors Data

In this Section we are going to examine anomaly detection as a technique to preprocess data before

storing it in the DT4GS Dataspace for further utilisation.

The SoTA techniques briefly described in this chapter are those that are being evaluated by the partners

while analyzing the available historical high frequency data made available by the LL partners. In addition,

given that a lot of methods employed in these two areas make use of machine learning models, we deem

it necessary to understand both how and why a model makes a certain prediction.

Thus, a summary of approaches for explaining machine learning models is presented last.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 53

6.2.1 Anomaly Detection

An anomaly can be thought of as an unexpected change in the state of a system, which is outside of its

local or global norm. Pang (2021) divides time series anomalies into three types, in particular point,

contextual, and collective anomalies. We briefly outline them below:

Point anomalies refer to data points that deviate remarkably from the rest of the data. Point anomalies

usually make up for a small percentage of the total data observations. The affected system after

experiencing these short anomaly intervals returns to its previous normal state. Point anomalies can also

represent statistical noise or noise produced by faulty sensing equipment.

Contextual anomalies refer to data points within the expected range of the distribution, but which

deviate from the expected data distribution, given a specific context. Contextual anomalies if taken in

isolation may be within the range of expected values, but when taken in the context of the surrounding

observations constitute anomalies.

Collective anomalies refer to sequences of points that do not repeat a typical previously observed

pattern. Individual observations within a collective anomaly may or may not be anomalous, it is only when

they appear as a group that they arouse suspicion.

The first two categories, namely, point and contextual anomalies, are referred to as point-based

anomalies, whereas collective anomalies are referred to as subsequence anomalies.

Anomaly detection problems are supposed, by definition, to handle and process unpredictable rare

events characterized by many unknown factors such as their structures, distributions and irregularities.

Anomalies are typically rare data instances, contrasting to normal instances that often account for an

overwhelming proportion of the data.

Schmidl (2022) studies 71 algorithms, categorizing them according to various criteria. One viable

categorization is by considering the method family into which each algorithm can be grouped. These

method families characterize the algorithms by their general approach of determining the abnormality of

specific points or subsequences within the time series. The resulting six method families are summarized

below:

• Forecasting methods: use a continuously learned model to forecast a number of time steps based

on a current context window. The values for the forecasted data points depend solely on the time

series’ data points in the preceding context window and the previously learned model. The

forecasted points are then compared to the observed values in the original time series to

determine how anomalous the observed values are.

• Reconstruction methods: build a model of normal behavior by encoding subsequences of a normal

training time series in a low-dimensional latent space. To detect anomalies in a test time series,

subsequences from the test series are reconstructed from the latent space, and the

reconstructed subsequences’ values are then compared to the original, observed series values.

• Encoding methods: are similar to reconstruction methods in that they also encode subsequences

of a time series in a low-dimensional latent space. However, they do not attempt to reconstruct

the subsequences from the latent space but compute the anomaly score directly from the latent

space representations.

• Distance methods: use specialized distance metrics to compare points or subsequences of a time

series with each other. Anomalous subsequences are expected to have larger distances to other

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 54

subsequences than subsequences with normal behavior. Cluster-based distance methods cluster

similar subsequences together and then compute the distances to dense areas.

• Distribution methods: fit a distribution model to the data. Anomalies are detected using frequency

rather than distance. The anomaly scores are usually measured using probabilities and likelihoods

or subsequences with respect to the prior calculated distributions.

• Isolation tree methods: build an ensemble of random trees that partition the sample of the test

time series. For the tree construction, the methods recursively select random features and

random split values as tree nodes to eventually isolate the samples in the tree leaves. The number

of splits required to isolate a sample is a measure described by the average path length over all

random trees in the ensemble. Because anomalous samples are easier to separate than normal

samples, they are on average closer to the tree root and have noticeably shorter paths. For this

reason, path lengths are characteristic of the normality of samples and, hence, their reciprocal

value translates into anomaly scores.

Anomaly detection algorithms can also be classified by their learning type, i.e unsupervised, supervised,

and semi-supervised. However, both Pang (2021) and Schmidl (2022) point out that supervised learning

approaches are quite unpopular in practice and thus the majority of techniques developed in anomaly

detection research is based mainly on semi-supervised and purely unsupervised settings and methods.

Unsupervised Methods do not require a set of labeled samples to fit the parameters of a particular

machine-learning model. There are multiple algorithms proposed to approach anomaly detection in an

unsupervised fashion. Below are presented some, that are actually evaluated by the partners.

• SAND (Streaming Subsequence Anomaly Detection), proposed by Boniol (2021). SAND supports

real-time analytics, as the algorithm is online and does not require access to the entire dataset.

Anomalies are detected based on their distance to a data structure that represents normal

behavior. Moreover, SAND does not require domain knowledge and thus can detect domain-

agnostic anomalies. Finally, the algorithm is able to adapt to distribution drifts, i.e., to changes in

the data generation process.

• Convolution Ensembles: Another state-of-the-art unsupervised anomaly detection method,

proposed by Campos (2022). The ensemble employs multiple basic anomaly detection models

built on convolutional sequence-to-sequence autoencoders. An autoencoder consists of an

encoding phase that compresses a time series T into a compact representation and a decoding

phase that reconstructs an output time series T’ from this representation. The representation is

only able to capture patterns that reflect normal behavior in the original time series and not

anomalies. The difference between observations in T and in T’ is called the reconstruction error.

Intuitively, the higher the reconstruction error which means less likely to be from the input

distribution, the higher the anomaly score. A threshold can be set to discriminate anomaly from

normality.

• Anomaly detection based on transformers has been introduced for example by Tuli (2022).

Transformers proved to be more efficient than LSTMs, mostly due to parallel computing in their

architecture. Tuli (2022) proposed to combine transformers with neural generative models for

better reconstruction models in anomaly detection. In particular, they propose an adversarial

training procedure to amplify reconstruction errors. GAN adversarial training is processed by two

transformer encoders and two transformer decoders to gain stability. A review of the application

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 55

of Transformers to important time series tasks, including forecasting, anomaly detection, and

classification, is presented by Wen (2022).

6.3 Forecasting

Machine Learning Architectures for Time Series Forecasting are particularly suitable for finding the

appropriate complex nonlinear mathematical function to turn an input into an output. Hence, machine

learning models provide a means to learn temporal dynamics in a purely data-driven manner. Here are

briefly presented some possible approaches to the Time Series Forecasting task:

• Artificial Neural Networks (ANNs) can be employed for nonlinear processes that have an unknown

functional relationship and as a result, are difficult to fit. The main concept with ANNs is that

inputs are passed through one or more hidden layers each of which consists of hidden units, or

nodes before they reach the output variable.

In time series forecasting, as in other domains, the emergence of competing neural network architectures

has relegated simple ANNs to the background.

• Convolutional Neural Networks (CNNs) are a specific kind of deep neural networks, proposed for

and mostly dedicated to image analysis and aimed at preserving spatial relationships in the data,

with very few connections between the layers. Having connections from all nodes of one layer to

all nodes in the subsequent layer, as in regular ANNs, proved extremely inefficient and thus CNNs

arose from the observation that a careful pruning of the connections, based on domain

knowledge, boosts performance.

• Recurrent Neural Networks (RNNs) were designed to handle sequential information as stated in

Lipton (2015). Typically, RNNs are capable of making predictions over many time steps, in time

series. An RNN achieves the same task at each step (with varying inputs): the sequence (x1, x2 , ·

· · , xt, xt+1, · · ·) is input to the RNN, element by element (one step at a time). An RNN performs

the same task for each element of a sequence, with the output being dependent on the previous

computations. The weights are context-dependent and dynamically updated for each time step.

• Long short-term memory networks (LSTMs) are the most widely-used subclass of RNNs, as they

perform better than RNNS in capturing long dependencies. LSTMs are intrinsically RNNs in which

changes were introduced in the computation of hidden states and outputs, using the inputs. They

were developed to address some limitations that occurred during the training process of regular

RNNs.

• Transformers, like RNNs, were designed to handle sequential data and tackle problems in natural

language processing (for instance, translation). Transformers were repurposed to address

forecasting in time series. The encoder and decoder form the two parts of the transformer’s

architecture. The encoder mainly consists of an input layer, an input encoding, a positional

encoding mechanism, and a stack of identical encoder layers. In the seminal work of Vaswani

(2017), the decoder is composed of an input layer, an input encoding, a positional encoding

mechanism, a stack of identical decoder layers and an output layer.

• Autoforecast (Optimal Forecasting Model Selection) (Abdallah 2022) is a meta-learning approach

that allows for the quick inference of the best time-series forecasting model for an unseen

dataset. Given a new time series dataset, AutoForecast selects the best performing forecasting

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 56

algorithm and its associated hyperparameters without having to first train or evaluate all the

models on the new time series data to select the best one. The meta-learner is trained on the

models’ performances on historical datasets and the time-series meta-features of these datasets.

6.4 ML Tracking Tools

To enable DT4GS to properly track the performance of developed machine learning models and their

version history, we consider third-party software that could assist us in managing their whole lifecycle.

After all, current machine learning methods often require thorough experimentation. This translates to

training a particular model instance, usually for prolonged periods of time, by feeding it with a large set

of data observations, then evaluating the model and measuring its performance by using standardized

metrics and finally trying to interpret the results and draw valid conclusions.

There are several tools available for tracking and managing machine learning experiments. To our

knowledge, two of the most complete ones are MLflow and Weights & Biases. These two solutions are

the ones currently being studied by the DT4GS consortium in order to identify the most suitable solution

for the project's needs. In this chapter we present a brief description of the capabilities and structures of

the tools.

6.4.1 Mlflow

MLflow42 is an open-source platform that helps manage the whole machine learning lifecycle. Its features

include tracking experiments, packaging code into reproducible runs, and sharing and deploying models.

MLflow currently offers four components:

● MLflow Tracking: An API to log parameters, code versions, metrics, and output files when

conducting machine learning experiments. The results of each experiment can be then visualized

and compared using an interactive UI. Tracking can also be used in any environment (for example,

a standalone script or a notebook) to log results to local files or to a server, then compare multiple

runs.

● MLflow Projects: A code packaging format for reproducible runs using Conda and Docker. Each

project is simply a directory with code or a Git repository and uses a descriptor file to specify its

dependencies and how to run the code. An MLflow Project is defined by a simple YAML file called

MLproject. Projects can specify their dependencies through a Conda environment. A project may

also have multiple entry points for invoking runs, with named parameters. You can run projects

using the command-line tool, either from local files or from a Git repository. MLflow will

automatically set up the right environment for the project and run it. In addition, if you use the

MLflow Tracking API in a Project, MLflow will remember the project version executed (that is, the

Git commit) and any parameters. You can then easily rerun the exact same code.

● MLflow Models: Α convention for packaging machine learning models in multiple formats called

"flavors". MLflow offers a variety of tools to help you deploy different flavors of models. Each

MLflow Model is saved as a directory containing arbitrary files and an MLmodel descriptor file

that lists the flavors it can be used in. In this way, models (from any ML library) can be easily

42 https://mlflow.org/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 57

deployed to batch and real-time scoring on platforms such as Docker, Apache Spark, Azure ML,

and AWS SageMaker.

● MLflow Model Registry: A centralized model store, set of APIs, and UI, to collaboratively manage

the full lifecycle of MLflow Models. It provides model lineage (which MLflow experiment and run

produced the model), model versioning, stage transitions (for example from staging to

production), and annotations.

6.4.2 Weights & Biases

Weights and Biases 43is a platform for machine learning experiment tracking, dataset versioning, and

model management. Its interactive dashboards facilitate visualizing model performance, training metrics,

and model predictions. The functionality supported by Weights and Biases is divided into 6 main

components:

● Experiments: Tracks, compares, and visualizes ML experiments. Logged model hyperparameters,

output, and metrics are streamed live into interactive graphs and tables. In this way, it is easy to

evaluate and compare the performance of multiple ML models simultaneously. CPU and GPU

usage can also be monitored, in order to identify potential training bottlenecks and avoid wasting

expensive resources. There is rich support for logging media of various forms, including images,

video, audio, and 3D objects. Dataset versioning is also provided with deduplication and diffing

handled internally by Weights & Biases.

● Reports: Allows for organizing and embedding visualizations, describing findings, sharing

updates with collaborators, and more. More specifically, updates and outcomes of developed

machine learning projects can be shared efficiently. Consequently, explaining how a particular

model works or whether its subsequent versions improved becomes more straightforward by

integrating graphs and other visualizations into shared reports. Furthermore, there is support for

making live comments, and taking snapshots of work logs. Finally, reports can be easily exported

as a LaTeX zip file or converted to PDF.

● Artifacts: Provides dataset versioning, model versioning, and tracking dependencies and results

across machine learning pipelines. An artifact in this context is a versioned folder of data. Entire

datasets can be stored directly in artifacts, or artifact references can be used to point to data in

other systems like S3, GCP, or other user-defined systems. Dependency graphs can be built on

users’ premises or in the cloud to trace the flow of data through pipelines. This ensures that

keeping track of which datasets are used as input to the tested models is as effortless as possible.

Moreover, this component tracks the evolution of users’ data over time and stores checkpoints

of the best-performing models.

● Tables: Logs, queries, and analyzes tabular data. In essence, it helps users to better understand

their datasets, visualize model predictions, and share insights in a central dashboard. Changes can

be precisely compared across models, epochs, or individual examples. Importantly, this aids in

realizing higher-level patterns in the data, and capturing and communicating valuable insights

with visual samples.

43 https://wandb.ai

https://wandb.ai/

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 58

● Sweeps: Automates hyperparameter search and explores the space of possible models. Sweeps

basically combines the benefits of automated hyperparameter search with visualization-rich,

interactive experiment tracking. Users can pick from popular search methods such as Bayesian,

grid search, and random to search the hyperparameter space. It also supports scaling and

parallelizing Sweep jobs across one or more machines.

● Models: The W&B Model Registry is used as a central system of record for models. It creates

Registered Models to organize the best model versions for a given task. Besides, it tracks models

moving into staging and production. A detailed history of all changes is maintained, including

which user moved a model to production.

7 Conclusions

DT4GS is aimed at making Digital Twin technology readily available to the shipping industry to support

accelerated transition to zero emissions. Within this aim, Work package 2 aims to develop an Open Ship

Operational Optimization Digital Twining Infrastructure, built on top of a Waterborne Sector Dataspace

to support shipping companies to build their own ship specific DTs.

This Deliverable has defined the user requirements, high level architecture and implementation

technologies selection for the Dataspace.

First, task 2.2 whose output is described in this Deliverable, surveyed the Industry requirements and

information architectures for shipping and maritime, focusing in particular on the latest paradigms such

as Internet of Things and Internet of Ships. The task was informed also by international industry standards

such as Industrial Data Spaces.

Next, the task analysed the user data requirements as described by the Project’s Living Labs in Deliverable

1.1. From that analysis, the task focused on data processing requirements, including storage, real time,

volumes, security and so on. This led to the definition of a high-level software architecture, in terms of

ship and shore-based software modules, to realise the required functionality of the Dataspace and adhere

to the users’ nonfunctional requirements for data security, sovereignty, and so on.

Based on that high level architecture, the task selected implementation technologies that meet the

Project’s requirements. The main criteria for the selection of technologies for data storage,

communications and processing, was that such technologies would have to be already proven in maritime

and/or other industry domains. Additionally, such technologies would have to meet current and future

maintenance, evolution and cost criteria, in order to be acceptable by the Project’s stakeholders.

Following that, the Deliverable discussed the deployment and utilisation of the dataspace architecture in

maritime analytics applications.

The overall strategy employed in this Deliverable, therefore, has been to adopt suitable solutions from

broader domains to the maritime context, in order to reap benefits from adoption, support, and future

developments. The Dataspace infrastructure described in this Deliverable provides a solid foundation for

further developments, in the remaining of the DT4GS Project, specifically, a refinement of the

architecture and reference implementations of the architecture in the Project’s Living Labs.

Important work dimensions in the next six months are the potential development of the DT4GS

dataspace not only to support the LL use cases but also the broader knowledge transfer on

decarbonisation technologies. For this close cooperation with T3.1, the DT4GS knowledge hub

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 59

incorporating outputs from T1.1, T1.2 and T1.3 as well asT2.4 DT4GS Model Blueprints and Open Model

Library is planned.

Further, mainly through the knowledge hub task and DT4GS Alliance activities the industry perspective

of the dataspace will be emphasized, utilising data available in interconnected Digital Twins (DTs).

Interconnected DTs represent 1) ships equipped with one or more decarbonisation solutions or 2)

decarbonisation equipment test facilities or related DTs. The interface of such nodes are connectors to

be developed and reported in the v2 deliverable.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 60

8 References

1. Apache Kafka, security, https://kafka.apache.org/documentation/#security

2. MongoDB. Internet of Things. url: https://www.mongodb .com / use - cases/internet-of-things (visited

on 04/12/2017).

3. Dan Sullivan, James Sulllivan. Find the IoT database that best fits your enterprise’s needs (Source:

https://internetofthingsagenda.techtarget.com/feature/Find-the-IoT-database-that-best-fits-your-

enterprises-needs)

4. Mustafa Abdallah, Ryan Rossi, Kanak Mahadik, Sungchul Kim, Handong Zhao, and Saurabh Bagchi.

“Autoforecast: Automatic time-series forecasting model selection.” In Proceedings of the 31st ACM

International Conference on Information and Knowledge Management, CIKM ’22, page 5–14, New

York, NY, USA, 2022. Association for Computing Machinery.

5. Paul Boniol, John Paparrizos, Yuhao Kang, Themis Palpanas, Ruey S. Tsay, Aaron J. Elmore, and

Michael J. Franklin. “Theseus: Navigating the labyrinth of time-series anomaly detection.” Proc. VLDB

Endow., 15(12):3702–3705, sep 2022.

6. Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. “SAND: streaming

subsequence anomaly detection.” Proc. VLDB Endow., 14(10):1717–1729, 2021.

7. David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang, and Christian S. Jensen.

”Unsupervised time series outlier detection with diversity-driven convolutional ensembles.” Proc.

VLDB Endow., 15(3):611–623, feb 2022.

8. Sohee Cho, Wonjoon Chang, Ginkyeng Lee, and Jaesik Choi. “Interpreting internal activation patterns

in deep temporal neural networks by finding prototypes.” In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, KDD ’21, page 158–166, New York, NY, USA,

2021. Association for Computing Machinery.

9. Yiru Chen and Silu Huang. “TSexplain: Surfacing evolving explanations for time series.” In

Proceedings of the 2021 International Conference on Management of Data, SIGMOD ’21, page 2686–

2690, New York, NY, USA, 2021. Association for Computing Machinery.

10. Fatoumata Dama and Christine Sinoquet. “Time Series Analysis and Modeling to Forecast: a Survey.”

(2021).

11. Jan G. De Gooijer and Rob Hyndman. (2005). “25 Years of IIF Time Series Forecasting: A Selective

Review.” SSRN Electronic Journal. 10.2139/ssrn.748904.

12. Riccardo Guidotti and Anna Monreale. “Designing shapelets for interpretable data agnostic

classification.” In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’21,

page 532–542, New York, NY, USA, 2021. Association for Computing Machinery.

13. Ilaria Gandin, Arjuna Scagnetto, Simona Romani, and Giulia Barbati. “Interpretability of time-series

deep learning models: A study in cardiovascular patients admitted to intensive care unit.” Journal of

Biomedical Informatics, 121:103876, 2021.

14. Abdelouahab Khelifati, Mourad Khayati, Philippe Cudre-Mauroux, Adrian Hanni, Qian Liu, and

Manfred Hauswirth. “Vadetis: An explainable evaluator for anomaly detection techniques.” 2021 IEEE

37th International Conference on Data Engineering (ICDE), pages 2661–2664, 2021.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 61

15. Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. “Lstm fully convolutional

networks for time series classification.” IEEE Access, 6:1662–1669, 2018.

16. Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and XiaHu. “Revisiting time series

outlier detection: Definitions and benchmarks.” In Thirty-fifth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

17. Zachary Lipton. (2015). “A Critical Review of Recurrent Neural Networks for Sequence Learning.”

18. Zhenyu Liu, Zhengtong Zhu, Jing Gao and Cheng Xu. "Forecast Methods for Time Series Data: A

Survey," in IEEE Access, vol. 9, pp. 91896-91912, 2021, doi: 10.1109/ACCESS.2021.3091162.

19. Lkhagvadorj Munkhdalai, Tsendsuren Munkhdalai, Kwang Ho Park, Tsatsral Amarbayasgalan,

Erdenebileg Batbaatar, Hyun Woo Park, and Keun Ho Ryu. “An end-to-end adaptive input selection

with dynamic weights for forecasting multivariate time series.” IEEE Access, 7:99099–99114, 2019.

20. Roberto Medico, Joeri Ruyssinck, Dirk Deschrijver, and Tom Dhaene. “Learning multivariate

shapelets with multi-layer neural networks for interpretable timeseries classification.” Adv. Data

Anal. Classif., 15(4):911–936, dec 2021.

21. Milad Moradi and Matthias Samwald. “Post-hoc explanation of black-box classifiers using confident

itemsets.” Expert Syst. Appl., 165:113941, 2021.

22. Qianli Ma, Wanqing Zhuang, Sen Li, Desen Huang, and Garrison Cottrell. “Adversarial dynamic

shapelet networks.” Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5069–

5076, Apr. 2020.

23. Felipe Oviedo, Zekun Ren, Shijing Sun, Charles M. Settens, Zhe Liu, Noor Titan Putri Hartono, Savitha

Ramasamy, Brian L. DeCost, Siyu Isaac Parker Tian, Giuseppe Romano, Aaron Gilad Kusne, and Tonio

Buonassisi. “Fast and interpretable classification of small x-ray diffraction datasets using data

augmentation and deep neural networks.” npj Computational Materials, 5:1–9, 2019.

24. John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin.

“TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection.” Proc. VLDB

Endow., 15(8):1697–1711, 2022.

25. Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. “Learning homophily couplings from non-iid

data for joint feature selection and noise-resilient outlier detection.” In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, IJCAI’17, page 2585–2591. AAAI Press, 2017.

26. Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for anomaly

detection: A review. ACM Comput. Surv., 54(2), mar 2021.

27. Leonardos Pantiskas, Kees Verstoep, and Henri Bal. “Interpretable multivariate time series

forecasting with temporal attention convolutional neural networks.” In 2020 IEEE Symposium Series

on Computational Intelligence (SSCI), pages 1687–1694, 2020.

28. Thomas Rojat, Raphael Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and Natalia Diaz-

Rodriguez. “Explainable artificial intelligence (xai) on timeseries data: A survey.” ArXiv,

abs/2104.00950, 2021.

29. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?: Explaining the

predictions of any classifier.” In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA, 2016. Association

for Computing Machinery.

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 62

30. Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, and Weng-Keen Wong. “Sequential feature

explanations for anomaly detection.” ACM Trans. Knowl. Discov. Data, 13(1), jan 2019.

31. Amal Saadallah, Maryam Tavakol, and Katharina Morik. “An actor-critic ensemble aggregation model

for time-series forecasting.” In 2021 IEEE 37th International Conference on Data Engineering (ICDE),

pages 2255–2260, 2021.

32. Anirban Sarkar, Deepak Vijaykeerthy, Anindya Sarkar, and Vineeth N. Balasubramanian. “A

framework for learning antehoc explainable models via concepts.” 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 10276–10285, 2022.

33. Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. “Anomaly detection in time series: A

comprehensive evaluation.” Proc. VLDB Endow., 15(9):1779–1797, jul 2022.

34. Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. Tranad. “Deep transformer networks for

anomaly detection in multivariate time series data.” Proc. VLDB Endow., 15(6):1201–1214, jun 2022.

35. Andreas Theissler, Francesco Spinnato, Udo Schlegel, and Riccardo Guidotti. “Explainable ai for time

series classification: A review, taxonomy and research directions.” IEEE Access, 10:100700–100724,

2022.

36. Gilles Vandewiele, Femke Ongenae, and Filip De Turck. “Gendis: Genetic discovery of shapelets.”

Sensors, 21(4), 2021.

37. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. “Attention is all you need.” In Proceedings of the 31st International

Conference on Neural Information Processing Systems (NIPS'17). 6000–6010.

38. Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.

“Transformers in time series: A survey.”, 2022.

39. Phillip Wenig, Sebastian Schmidl, and Thorsten Papenbrock. “Timeeval: A benchmarking toolkit for

time series anomaly detection algorithms.” Proc. VLDB Endow., 15(12):3678–3681, sep 2022.

40. Internation Data Spaces, https://internationalDataspaces.org/

41. Multisensor system for fire detection and situational awareness Susan Rose-Pehrsson, Christian

Minor, Kevin Johnson, Jeffrey Owrutsky, Stephen Wales, Daniel Steinhurst, and Daniel Gottuk

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 63

Annex I – Base code for data stream from InfluxDB database to an

external source via Kafka Connect

The code presented in this annex is a first base implementation in Java of the data stream from a InfluxDB

database to an external source utilising Kafka Connect libraries. InfluxDBKafkaConnector class extends

the SourceTask class from the Kafka Connect API. The start method is used to connect to the InfluxDB

database using the connection information provided in the task configuration. The poll method is used

to execute the query and convert the results to SourceRecord objects, which can be consumed by a Kafka

topic. The stop method is used to close the connection to the InfluxDB database. Note that the

conversion from QueryResult to SourceRecord is showed as an example implementation and will be

needed to be adapted given the LL data to process.

1. import org.apache.kafka.connect.source.SourceRecord;

2. import org.apache.kafka.connect.source.SourceTask;

3. import org.influxdb.InfluxDB;

4. import org.influxdb.InfluxDBFactory;

5. import org.influxdb.dto.Query;

6. import org.influxdb.dto.QueryResult;

7.

8. import java.util.List;

9. import java.util.Map;

10.

11. public class InfluxDBKafkaConnector extends SourceTask {

12.

13. private InfluxDB influxDB;

14. private String databaseName;

15. private String query;

16.

17. @Override

18. public void start(Map<String, String> props) {

19. String url = props.get("influxdb.url");

20. String username = props.get("influxdb.username");

21. String password = props.get("influxdb.password");

22. databaseName = props.get("influxdb.database");

23. query = props.get("influxdb.query");

24.

25. influxDB = InfluxDBFactory.connect(url, username, password);

26. }

Deliverable D2.2 | DT4GS Project | Grant Agreement no. 101056799

© DT4GS, 2022 64

27.

28.

29. @Override

30. public List<SourceRecord> poll() throws InterruptedException {

31. QueryResult result = influxDB.query(new Query(query, databaseName));

32. List<SourceRecord> records = new ArrayList<>();

33. for (QueryResult.Result res : result.getResults()) {

34. for (QueryResult.Series series : res.getSeries()) {

35. List<List<Object>> values = series.getValues();

36. for (List<Object> value : values) {

37. Map<String, Object> sourcePartition = new HashMap<>();

38. sourcePartition.put("database", databaseName);

39. sourcePartition.put("series", series.getName());

40. Map<String, Object> sourceOffset = new HashMap<>();

41. sourceOffset.put("index", value.get(0));

42. SourceRecord record = new SourceRecord(

43. sourcePartition,

44. sourceOffset,

45. "influxdb",

46. null,

47. series.getColumns(),

48. value.subList(1, value.size()));

49. records.add(record);

50. }

51. }

52. }

53. return records;

54. }

55.

56. @Override

57. public void stop() {

58. influxDB.close();

59. }

